Answer:
There is no tangent line of the given circle at (6, 0).
Step-by-step explanation:
Given equation of the circle,
![x^2 + y^2 = 1](https://tex.z-dn.net/?f=x%5E2%20%2B%20y%5E2%20%3D%201)
∵ equation of a circle is
,
Where, (h, k) is the center of the circle and r is the radius,
By comparing,
Center of the given circle = (0, 0),
Radius of the circle = 1 unit
Now, check whether point (6, 0) lie on the circle,
if x = 6, ![6^2 + y^2 = 1](https://tex.z-dn.net/?f=6%5E2%20%2B%20y%5E2%20%3D%201)
![36 + y^2 = 1](https://tex.z-dn.net/?f=36%20%2B%20y%5E2%20%3D%201)
![y^2 = 1- 36](https://tex.z-dn.net/?f=y%5E2%20%3D%201-%2036)
![y= i\sqrt{35}\neq 0](https://tex.z-dn.net/?f=y%3D%20i%5Csqrt%7B35%7D%5Cneq%200)
i.e., (6, 0) does not lie on the circle,
Hence, there is no tangent line of the given circle at (6, 0).