1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svet_ta [14]
3 years ago
14

6x-9y+45 in slope intercept form

Mathematics
1 answer:
sweet [91]3 years ago
6 0
The answer is: y= 2/3x +5
You might be interested in
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Point P' is the image of P(3,5) under a reflection across the y-axis.
Kryger [21]

Answer:

(-3,5)

Step-by-step explanation:

In reflections the x axis is the opposite only

8 0
3 years ago
Find the solution to the following system of linear equations.
bearhunter [10]
Infinitely many solutions
3 0
3 years ago
Read 2 more answers
Construct a 95% confidence interval for a population proportion using repeated tests of significance to develop an interval of p
Sunny_sXe [5.5K]

Answer:

bzissssossisbs x9s s siss s sبسیسجسبسئسطسب،یز unsbsjsus

Step-by-step explanation:

bzbzjznzbsisbsbs

8 0
2 years ago
10 Write the fraction two different ways.
Cerrena [4.2K]

Answer:

-0.8,  -77%

Step-by-step explanation:

These have been rounded up by the way,

I converted it to decimal and percent form

5 0
3 years ago
Other questions:
  • Alex can ski 960 meters in 5 minutes. If his skiing speed is increased by 20 m/min, how many meters can he cover in 10 minutes?
    15·2 answers
  • A cat falls out of a tree and takes 1.4 seconds to land safely on its paws on the ground how many meters did the cat fall ?
    5·1 answer
  • A Web music store offers two versions of a popular song. The size of the standard version is 2.7 megabytes (MB). The size of the
    15·1 answer
  • a pair of dice is rolled. the observation is the number that comes up on each die. the event, e, is “the sum of the dice is eith
    7·1 answer
  • Fill in the blank please
    5·1 answer
  • Which rule describes the translation PQR --&gt; P'Q'R'?
    7·1 answer
  • F = 9/5C + 32 solve for f​
    6·1 answer
  • "You purchase a vintage car for $140,000 and it appreciates (i.E. Increases in value) by 4% annually. How much will the car be w
    9·1 answer
  • PLEASE HELP
    7·1 answer
  • What operation is this that’s all
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!