Answer: 0.100 m 
Explanation:
Elevation in boiling point is given by:

= Elevation in boiling point
i= vant hoff factor
= boiling point constant
m= molality
1. For 0.100 m 
, i= 3 as it is a electrolyte and dissociate to give 3 ions. and concentration of ions will be 
2. For 0.100 m 
, i= 2 as it is a electrolyte and dissociate to give 2 ions, concentration of ions will be 
3. For 0.200 m 
, i= 1 as it is a non electrolyte and does not dissociate, concentration of ions will be 
4. For 0.060 m 
, i= 4 as it is a electrolyte and dissociate to give 4 ions. and concentration of ions will be 
Thus as concentration of solute is highest for
, the elevation in boiling point is highest and thus has the highest boiling point.
Answer:
n=N/Na
n = \frac{8.23 \times {10}^{22} }{6.02 \times {10}^{23} } = 0.1367 \: mol
answer: 0.14 mol
Explanation:
Answer:
1- Option A = Sink
2- Option B = Float
Explanation:
1- If an object’s density is greater than 1.00 g/mL, it will sink in water.
For example, the density of aluminum is 2.7g/cm³. That is why it will sink in water.
2- If an object’s density is less than 1.00 g/mL, it will float in water.
For example, the density of oak is 0.7 g/cm³. That is why oak will float in water.
3- Given data:
Mass, m = 50 g
Volume, v = 10 cm3 ( 1ml = 1cm3)
Formula of density :
Density = mass/ volume
d = m/v
d = 50g/10cm3
d = 5 g/cm3
So pH of the 1.0 * 10-2 mol-1 KOH is 12.
Definitely, the correct answer is option B. When Ca(OH)2 is added into a beaker, the solution will turn into pink when the indicator phenolphthalein is added. This is due to the hydroxide ions from the calcium hydroxide dissolved in water. The compound dissociates into calcium ions and hydroxide ions.