Answer:
Step-by-step explanation:
Find the complete question
Zelie planned for a square pool to have a side length of 28 ft but found that it needs to be 14 ft long to fit in her backyard. She found the change of scale below.
Which is Zelie’s error?
Zelie should have divided both numbers by 14.
Zelie should have written the ratio as 28/7.
Zelie should have written the ratio as 14/8.
Zelie should have subtracted 14 from both numbers.
Original length of pool = 28ft
If he found that it need to be 14ft longer then the actual measure = 14th
given equation is;
(28 - 7)/14 - 7 = 14/7
Scale constant = original length/actual length
Scale constant = 28/14
Scale constant = 2
Hence the scale constant is 2
According to the option, Zelei should have divided both numbers by 14.
1/2 + 2x = (3+4+12)x / 12
1/2 + 2x = 19x/12
1/2 = -5/2 x
x = -1/5
Answer with explanation:

--------------------------------------------------------Dividing both sides by 8 x
This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.
Integrating Factor
Multiplying both sides by Integrating Factor
![x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\times [y'+y\times\frac{1+4x^2}{8x}]=\frac{1}{8}\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\\\\ \text{Integrating both sides}\\\\y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\frac{1}{8}\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx \\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=-[x^{\frac{9}{8}}]\times\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{\frac{9}{16}}}\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=(-1)^{\frac{-1}{8}}[ \Gamma(0.5625, -x^2)]+C-----(1)](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5Ctimes%20%5By%27%2By%5Ctimes%5Cfrac%7B1%2B4x%5E2%7D%7B8x%7D%5D%3D%5Cfrac%7B1%7D%7B8%7D%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5C%5C%5C%5C%20%5Ctext%7BIntegrating%20both%20sides%7D%5C%5C%5C%5Cy%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%5Cint%20%7Bx%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%7D%20%5C%2C%20dx%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D-%5Bx%5E%7B%5Cfrac%7B9%7D%7B8%7D%7D%5D%5Ctimes%5Cfrac%7B%20%5CGamma%280.5625%2C%20-x%5E2%29%7D%7B%28-x%5E2%29%5E%7B%5Cfrac%7B9%7D%7B16%7D%7D%7D%5C%5C%5C%5C8y%5Ctimes%20x%5E%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%3D%28-1%29%5E%7B%5Cfrac%7B-1%7D%7B8%7D%7D%5B%20%5CGamma%280.5625%2C%20-x%5E2%29%5D%2BC-----%281%29)
When , x=1, gives , y=9.
Evaluate the value of C and substitute in the equation 1.
Here are the steps to answer this question:
1. Find the denominator. Since there is 8 possible outcomes, our denominator will be 8.
2. Find the numerator. To do this we need to find out of all the 8 possible outcomes, how many are them are y. Since its only 1 y, the numerator will be 1.
3. Now all we have to do now is make our fraction. The 8 possible outcomes given, only one of them has y which means that our fraction will be 1/8.
4. Answer: 1/8 or .125 or 12.5% chance for the spinner to land on y. I hope this helps!