BC=19
Explanation
Step 1
ABE
triangle ABE is rigth triangle, then let
![\begin{gathered} Angle=60 \\ adjacentside=BE \\ opposit\text{ side(the one in front of the angle)= AB=}\frac{19\sqrt[]{6}}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20Angle%3D60%20%5C%5C%20adjacentside%3DBE%20%5C%5C%20opposit%5Ctext%7B%20side%28the%20one%20in%20front%20of%20the%20angle%29%3D%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5Cend%7Bgathered%7D)
so, we need a function that relates, angle, adjancent side and opposite side

replace
![\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 60=\frac{AB}{\text{BE}} \\ \text{cross multiply} \\ \text{BE}\cdot\tan \text{ 60=AB} \\ \text{divide both sides by tan 60} \\ \frac{\text{BE}\cdot\tan\text{ 60}}{\tan\text{ 60}}=\frac{\text{AB}}{\tan\text{ 60}} \\ BE=\frac{\text{AB}}{\tan\text{ 60}} \\ \text{if AB=}\frac{19\sqrt[]{6}}{4} \\ BE=\frac{\frac{19\sqrt[]{6}}{4}}{\sqrt[]{3}} \\ BE=\frac{19\sqrt[]{6}}{4\sqrt[]{3}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctan%20%5Ctheta%3D%5Cfrac%7Bopposite%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Badjacent%20side%7D%7D%20%5C%5C%20%5Ctan%2060%3D%5Cfrac%7BAB%7D%7B%5Ctext%7BBE%7D%7D%20%5C%5C%20%5Ctext%7Bcross%20multiply%7D%20%5C%5C%20%5Ctext%7BBE%7D%5Ccdot%5Ctan%20%5Ctext%7B%2060%3DAB%7D%20%5C%5C%20%5Ctext%7Bdivide%20both%20sides%20by%20tan%2060%7D%20%5C%5C%20%5Cfrac%7B%5Ctext%7BBE%7D%5Ccdot%5Ctan%5Ctext%7B%2060%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Ctext%7BAB%7D%7D%7B%5Ctan%5Ctext%7B%2060%7D%7D%20%5C%5C%20%5Ctext%7Bif%20AB%3D%7D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%20%5C%5C%20BE%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%7D%7D%7B%5Csqrt%5B%5D%7B3%7D%7D%20%5C%5C%20BE%3D%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%20%5Cend%7Bgathered%7D)
Step 2
BED
again, we have a rigth triangle,then let

so, we need a function that relates; angle, hypotenuse and adjacent side

replace.
![\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 45=\frac{6.71}{\text{BD}} \\ BD=\frac{6.71}{\cos \text{ 45}} \\ BD=\frac{\frac{19\sqrt[]{6}}{4\sqrt[]{3}}}{\frac{\sqrt[]{2}}{2}} \\ BD=\frac{38\sqrt[]{6}}{4\sqrt[]{6}} \\ BD=\frac{38}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5Ctheta%3D%5Cfrac%7Badjacent%5Ctext%7B%20side%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%20%5C%5C%20%5Ccos%2045%3D%5Cfrac%7B6.71%7D%7B%5Ctext%7BBD%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B6.71%7D%7B%5Ccos%20%5Ctext%7B%2045%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B%5Cfrac%7B19%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B3%7D%7D%7D%7B%5Cfrac%7B%5Csqrt%5B%5D%7B2%7D%7D%7B2%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%5Csqrt%5B%5D%7B6%7D%7D%7B4%5Csqrt%5B%5D%7B6%7D%7D%20%5C%5C%20BD%3D%5Cfrac%7B38%7D%7B4%7D%20%5Cend%7Bgathered%7D)
Step 3
finally BDE
let
angle=30
opposite side= BD
use sin function

so, the answer is 19
I hop
X - 2y = -29
x - y = -11
first solve for x in the first equation;
x = 2y - 29
now substitute it into the second equation;
x - y = -11
2y - 29 - y = -11
y - 29 = -11
solve for y;
y - 29 = -11
y = -11 + 29
y = 18
solve for x by substituting what y equals;
x = 2y - 29
x = 2(18) - 29
x = 7
so your answer is, (7, 18)
hope this helped!! blessings x
Answer:
Yes, the quantities are proportional.
Step-by-step explanation:
To determine whether they were proportional or not, I compared the ratio of grams of sugar to servings in each pair of data points. 4/2, 6/3, 8/4, and 10/5 were the four points. All of them can be simplified to 2/1, which tells us that each serving of sugar is 2 grams, no matter how many servings are counted. This means that the amount of sugar grows in direct proportion to the number of servings.
Answer:
Yards
Step-by-step explanation:
solving using Pythagorean Theorem
square root
=
Base on the explanation above we can tell that the length of the diagonal across this field is less than 120 yards.
We are looking to find the point where the curve discontinued
Step 1: Factorise both numerator and denominator (if possible)

Step 2: Recognise the common factor, which is

Step 3: Equate the common factor to 0


Answer: -5