Answer:
5 1/3 mph or 5.33mph
Step-by-step explanation:
1/3 of a mile / 1/16 of an hour = MPH. In order to divide fractions you flip the bottom fraction and multiply across. 1/3 / 1/16 = 1/3 * 16/1 = 16/3 = 5 1/3 = 5.33mph
Answer:
The answer is 50$ lol
Step-by-step explanation: I dunno what the question is
4x=11 is the correct answer:)
Check the picture below, so the parabola looks more or less like so.
the vertex is always half-way between the focus point and the directrix, and since the parabola is opening downwards, the "p" distance is negative.
![\textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer: 2+(-35)
Step-by-step explanation:
When finding which equation is equivalent to the one you have. It's best to find what your equation's answer is.
2-35 equals -33
So we need to find the other equation that equals the same, for that's "equivalent". When you're trying to add a positive and a negative together, you're actually subtracting them because of the negative. In which your answer would end up as a negative, and if the negative is the greater number, you subtract it that way. Sometimes it's good to use a number line so you don't mess up if you're gonna go that way.