1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
3 years ago
7

A rectangle has a length of 12 inches and a width of 6 inches. A second rectangle will be drawn with a scale factor of

Mathematics
1 answer:
LenaWriter [7]3 years ago
6 0

Answer:

36 × 18=648

Step-by-step explanation:

first one should do the area which results to 36 inches.

secondly do 3 × length of each side of the rectangle since scale factor is gotten by doing the recipricol of the scale factor given.

You might be interested in
I need help on 10,11,12, and 13 plz help me
Mila [183]
10. 14
       2 * 7 <==

11. 12
      6 * 2
      2 * 3 * 2 = 2^2 * 3 <==

12. 15
      3 * 5 <==

13. ur gonna have 3 tables that each have 4 chairs
7 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
A bag of marbles contains 15 blue marbles and 25 green marbles. Which of the
d1i1m1o1n [39]

Answer:

5/8

Step-by-step explanation:

6 0
2 years ago
Henry has 4 more cards than Doug. Doug has 12 cards. How many cards does Henry have?
PIT_PIT [208]

Answer: doug has 16 cards

Step-by-step explanation: 12+4=16

                                        Give brainliest if it help :)

4 0
2 years ago
Read 2 more answers
IWILL MARK BRAINLEST PLS HELP ASAP
IgorLugansk [536]

Answer:

BCD = ECD

Step-by-step explanation:

they would equal the same thing because it is still the same shape

3 0
3 years ago
Other questions:
  • Will an object with a density of. 97 g/ml float or sink in water explain
    5·1 answer
  • Find the missing angles of 60 40
    5·1 answer
  • Here are the test scores for 8 students in Mr. P's class. 58, 82, 43, 73, 90, 37, 62, 75 What is the percentage of these test sc
    10·1 answer
  • Find the greatest common factor of 24, 36, and 48. help
    11·2 answers
  • Which expression is equivalent to b less than 50?<br> A 50b<br> B b - 50<br> C 50/b<br> D 50 - b
    10·1 answer
  • can someone please help? And can you also explain how to do it, because I forgot the steps on how to do it ​
    10·1 answer
  • PLZ HELP ME ON THIS THANK YOU SO MUCH!
    14·2 answers
  • The second part is thiss
    11·1 answer
  • The function f(x) = x2 is translated 7 units to the left and 3 units down to form the function g(x). Which represents g(x)?
    11·1 answer
  • Can anyone please help me?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!