Answer:
The workers will need 10 days to finish the job.
Step-by-step explanation:
To solve this question we can use a compound rule of three. We have:
10 road workers -> 5 days -> 2h/day
2 road workers -> x days -> 5h/days
The first thing we should do is analyze how the proportions between the variables work, if they're inversely or directly proportional. If we raise the number of workers we expect that the amount of days needed to finish the job lowers and if we raise the number of hours worked in a day we expect that the workers would need less days to finish the job. So we need to invert the fractions that are inversely proportional to the amount of days worked, then we have:
2 -> 5 -> 5
10-> x -> 2
x = (5*2*10)/(2*5) = 100/10 = 10 days
Answer:
[-5, 4) ∪ (4, ∞)
Step-by-step explanation:
Given functions:


Composite function:
![\begin{aligned}(f\:o\:g)(x)&=f[g(x)]\\ & =\dfrac{1}{\sqrt{x+5}-3} \end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%28f%5C%3Ao%5C%3Ag%29%28x%29%26%3Df%5Bg%28x%29%5D%5C%5C%20%26%20%3D%5Cdfrac%7B1%7D%7B%5Csqrt%7Bx%2B5%7D-3%7D%20%5Cend%7Baligned%7D)
Domain: input values (x-values)
For
to be defined:


Therefore,
and 
⇒ [-5, 4) ∪ (4, ∞)
Yeah because he Sheldon do I be j I got work y’all got work at
C is the answer
for example
assume that the height of a rectangular prism is 2, width is 1 and length measures 3
the volume will be 6
(2*1*3)
if we multiply height with the scale factor of 1/2
it becomes 1
so the volume will be 3
(1*1*3)
this situation goes for other examples, too
good luck