1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
15

How can you use a table with equally-spaced inputs to determine whether a relationship is linear? Exponential?

Mathematics
1 answer:
Helen [10]3 years ago
8 0
Nooooooo imneedd piccc
You might be interested in
Please help me with this
Ede4ka [16]

Answer:

A. complementary

Step-by-step explanation:

Complementary is when 2 angles add up to 90°. Therefore, the angle in the image shown is a 90° angle. Hope this helps :)

5 0
3 years ago
How do you write 1/4 as money
sveta [45]
The decimal equivalent of 1/4 is 0.25.
8 0
3 years ago
Read 2 more answers
What is the median of the numbers below?<br><br> 5,4,5,8,3,5,2
Firlakuza [10]
The median is the middle number. To find the median, put the numbers in order of least to greatest.

2,3,4,5,5,5,8

The middle number is the one that is the median. Because there are seven numbers, the exact number in the middle is 5, making it the median.
6 0
3 years ago
Read 2 more answers
Number 1d please help me analytical geometry
lesantik [10]
For a) is just the distance formula

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ x}}\quad ,&{{ 1}})\quad &#10;%  (c,d)&#10;B&({{ -4}}\quad ,&{{ 1}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}&#10;\\\\\\&#10;\sqrt{8} = \sqrt{({{ -4}}-{{ x}})^2 + (1-1)^2}&#10;\end{array}
-----------------------------------------------------------------------------------------
for b)  is also the distance formula, just different coordinates and distance

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ -7}}\quad ,&{{ y}})\quad &#10;%  (c,d)&#10;B&({{ -3}}\quad ,&{{ 4}})&#10;\end{array}\ \ &#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}&#10;\\\\\\&#10;4\sqrt{2} = \sqrt{(-3-(-7))^2+(4-y)^2}&#10;\end{array}
--------------------------------------------------------------------------
for c)  well... we know AB = BC.... we do have the coordinates for A and B
so... find the distance for AB, that is \bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;A&({{ -3}}\quad ,&{{ 0}})\quad &#10;%  (c,d)&#10;B&({{ 5}}\quad ,&{{ -2}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\&#10;d=\boxed{?}&#10;&#10;\end{array}

now.. whatever that is, is  = BC, so  the distance for BC is

\bf \textit{distance between 2 points}\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;B&({{ 5}}\quad ,&{{ -2}})\quad &#10;%  (c,d)&#10;C&({{ -13}}\quad ,&{{ y}})&#10;\end{array}\qquad &#10;%  distance value&#10;\begin{array}{llll}&#10;&#10;d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\&#10;d=BC\\\\&#10;BC=\boxed{?}&#10;&#10;\end{array}

so... whatever distance you get for AB, set it equals to BC, BC will be in "y-terms" since the C point has a variable in its ordered points

so.. .solve AB = BC for "y"
------------------------------------------------------------------------------------

now d)   we know M and N are equidistant to P, that simply means that P is the midpoint of the segment MN

so use the midpoint formula

\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;M&({{-2}}\quad ,&{{ 1}})\quad &#10;%  (c,d)&#10;N&({{ x}}\quad ,&{{ 1}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=P&#10;\\\\\\&#10;

\bf \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=(1,4)\implies &#10;\begin{cases}&#10;\cfrac{{{ x_2}} + {{ x_1}}}{2}=1\leftarrow \textit{solve for "x"}\\\\&#10;\cfrac{{{ y_2}} + {{ y_1}}}{2}=4&#10;\end{cases}

now, for d), you can also just use the distance formula, find the distance for MP, then since MP = PN, find the distance for PN in x-terms and then set it to equal to MP and solve for "x"


7 0
4 years ago
Help me :((
NARA [144]

Answer:

(-x,-y)

180*

Step-by-step explanation:

This is the right answer

8 0
4 years ago
Read 2 more answers
Other questions:
  • A box (with no top) is to be constructed from a piece of cardboard of sides a and b by cutting out squares of length h from the
    11·1 answer
  • What is the slope of a horizontal line?
    14·1 answer
  • Benito save six dollars out of every $20 he earns he earned $90 one month how much did he save
    5·1 answer
  • Using a graphing calculator to determine a quadratic function h(t) for the data?
    8·1 answer
  • Help????????????????????
    11·1 answer
  • What similarities and differences do you see in the rules for adding, subtracting, multiplying, and
    10·1 answer
  • Help!! Due Tomorrow!!
    9·1 answer
  • question; The chart below shows the number of tickets to the annual teachers vs. students basketball game. What was the most num
    6·2 answers
  • Help&amp;EXPLAIN <br><br> Don’t use for points <br> I’ll report
    7·2 answers
  • Find measure of n<br>..............​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!