The solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
<em><u>Solution:</u></em>
Given that,

<em><u>We have to substitute eqn 1 in eqn 2</u></em>






Substitute x = 2.1925 in eqn 1
y = 2.1925 + 3
y = 5.1925
Substitute x = -3.1925 in eqn 1
y = -3.1925 + 3
y = -0.1925
Thus the solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
A rectangle, presumably, as the cross section is going to be whatever shape the outward faces are (in the case of a vertical cross section like this one)
Answer:
See below.
Step-by-step explanation:
The 2 functions have the same output value when x = 7 ( that is what m(x) = p(x) at x = 7 means).
Answer:
2
Step-by-step explanation:
Because it's a proportional relationship and it goes through the point (9, 18) the equation is y = 2x so when x = 1, y = 2.
First one:
cos(A)=AC/AB=3/4.24
cos(B)=BC/AB=3/4.24
Cos(A)/cos(B)=AC/AB / (BC/AB) = AC/AB * AB/BC = AC/BC=3/3=1
Second one:
To solve this problem, we have to ASSUME AFE is a straight line, i.e. angle EFB is 90 degrees. (this is not explicitly given).
If that's the case, AE is a transversal of parallel lines AB and DE.
And Angle A is congruent to angle E (alternate interior angles).
Therefore sin(A)=sin(E)=0.5