Answer:
C
Step-by-step explanation:
We want to evaluate the definite integral:
![\displaystyle \int_0^1 (x+2)(3x^2+12x+1)^{1/2}\, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%28x%2B2%29%283x%5E2%2B12x%2B1%29%5E%7B1%2F2%7D%5C%2C%20dx)
Again, notice that the radicand is quite similar to the outside factor. So, we can use u-substitution again. We will let:
![\displaystyle u=3x^2+12x+1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20u%3D3x%5E2%2B12x%2B1)
Then:
![\displaystyle \frac{du}{dx}=6x+12](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdu%7D%7Bdx%7D%3D6x%2B12)
Hence:
![\displaystyle du=6x+12 \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20du%3D6x%2B12%20%5C%2C%20dx)
And we can divide both sides by 6:
![\displaystyle \frac{1}{6}\, du=x+2\, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B6%7D%5C%2C%20du%3Dx%2B2%5C%2C%20dx)
Note that the limits of integration of our original integral (from x = 0 to x = 1) is in the domain of x. Since we changed variables, we should also change the limits of integration to u. So:
![u(0)=3(0)^2+12(0)+1=1](https://tex.z-dn.net/?f=u%280%29%3D3%280%29%5E2%2B12%280%29%2B1%3D1)
And:
![u(1)=3(1)^2+12(1)+1=16](https://tex.z-dn.net/?f=u%281%29%3D3%281%29%5E2%2B12%281%29%2B1%3D16)
Hence, our new limits of integration is from u = 1 to u = 16.
Perform the substitution:
![\displaystyle =\int_{1}^{16} u^{1/2}\Big(\frac{1}{6}\, du\Big)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%5Cint_%7B1%7D%5E%7B16%7D%20u%5E%7B1%2F2%7D%5CBig%28%5Cfrac%7B1%7D%7B6%7D%5C%2C%20du%5CBig%29)
Simplify:
![\displaystyle =\frac{1}{6}\int_1^{16}u^{1/2}\, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%5Cfrac%7B1%7D%7B6%7D%5Cint_1%5E%7B16%7Du%5E%7B1%2F2%7D%5C%2C%20du)
Integrate:
![\displaystyle =\frac{1}{6}\Big(\frac{2}{3}u^{3/2}\Big)\Big|_{1}^{16}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%5Cfrac%7B1%7D%7B6%7D%5CBig%28%5Cfrac%7B2%7D%7B3%7Du%5E%7B3%2F2%7D%5CBig%29%5CBig%7C_%7B1%7D%5E%7B16%7D)
Simplify:
![=\displaystyle \frac{1}{9}\Big(u^{3/2}\Big|_1^{16}\Big)](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B9%7D%5CBig%28u%5E%7B3%2F2%7D%5CBig%7C_1%5E%7B16%7D%5CBig%29)
Evaluate:
![\displaystyle =\frac{1}{9}\Big(16^{3/2}-1^{3/2}\Big)=\frac{1}{9}(64-1)=7](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%3D%5Cfrac%7B1%7D%7B9%7D%5CBig%2816%5E%7B3%2F2%7D-1%5E%7B3%2F2%7D%5CBig%29%3D%5Cfrac%7B1%7D%7B9%7D%2864-1%29%3D7)
The answer is C.