Answer:
Y is probably excitatory and Z is probably inhibitory
Explanation:
- Two neurons communicate with each other generally by releasing neurotransmitters.
- The neuron which releases the neurotransmitter is termed as presynaptic neuron and the neuron to which the neurotransmitter binds to exert its effects is called as postsynaptic neuron.
- Based on the nature of the neurotransmitter released, the presynaptic neurons can either be inhibitory or excitatory in nature.
- The change in the membrane potential of the postsynaptic neurons depends on the total sum of inputs coming from different pre synaptic neurons at a given time.
- From the given situation, the stimulation by X alone is causing deploarization of 0.5 mV which shows that it is causing excitation, and since depolarization is increasing when X and Y are stimulaneously stimulated Y is also excitatory in nature. However the depolarisation is not occurring when X and Z are stimualted together and hence, Z is probably inhibitory in nature.
Answer:
Snake venom involves enzymes, proteins and substances with a cytotoxic, neurotoxic effect and coagulants.
Explanation:
Snake venom is very deadly because of the enzymes it contains. For example, Snake venom hinders cholinesterase which causes loss of muscle control.
Answer:
Pancreas secrets two hormones called insulin and glucagon which helps in maintaining the glucose level in the blood.
Explanation:
Pancreas secrets a hormone called as insulin, which helps the cell in absorbing the glucose by reducing the blood sugar and providing glucose for energy. On falling of the sugar level pancreas releases a hormone called glucagon. This glucagon informs the pancreas about the presence of low sugar in blood, after which it releases the stored glucose, and helps in raising the blood sugar level. Alpha cell of pancreas produces glucagon.
Answer: The alleles of a plant that is heterozygous for seed color can be represented as Y for dominant allele for yellow seed and y for recessive allele for green seed.
Explanation: A plant that is heterozygous for seed colour has one dominant allele and one recessive allele for seed colour. If Y represents the dominant allele for yellow seed colour and y represents the recessive allele for green seed colour, therefore the plant has a genotype of Yy. A dominant allele is one that has the ability to mask the effect of a recessive allele while a recessive allele is one whose effect is masked by a dominant allele. Dominant alleles are denoted with upper cases while recessive alleles are denoted with lower cases. A plant that is heterozygous for seed colour with genotype Yy will manifest outwardly as Yellow seed colour due to the presence of the dominant allele Y.
Answer:
The first line of defence (or outside defence system) includes physical and chemical barriers that are always ready and prepared to defend the body from infection. These include your skin, tears, mucus, cilia, stomach acid, urine flow, 'friendly' bacteria and white blood cells called neutrophils.
Explanation: