Answer:
<em>113.04</em>
Step-by-step explanation:
Using: A=πr squared, u do 3.14 times 6 squared, which gives u: 113.04!!
Answer:
students.
Step-by-step explanation:
We have been given that of the students that attended Roosevelt Elementary 6/8 of the school play a sport. Of the students are playing a sport 3/5 of the students are also involved in the drama club.
To find the students are both play a sport and a part of the drama club, we need to find 3/5 part of 6/8 as:




Therefore,
students play sport and part of the drama club.
Answer:
occording to my calculations its 13.00sqm
Step-by-step explanation:
Answer:
1.932 days (or approximatelly 1 day, 22 hours and 22 minutes)
Step-by-step explanation:
The inicial concentration is 60,000, and this concentration triples every 4 days, so we can write the equation:
P = Po * r^t
where P is the final concentration after t periods of 4 days, Po is the inicial concentration and r is the ratio that the concentration increases (r = 3)
Then, we have that:
102000 = 60000 * 3^t
3^t = 102/60 = 1.7
log(3^t) = log(1.7)
t*log(3) = log(1.7)
t = log(1.7)/log(3) = 0.483
so the number of days that will take is 4*0.483 = 1.932 days (or approximatelly 1 day, 22 hours and 22 minutes)
Answer:
A.) gf(x) = 3x^2 + 12x + 9
B.) g'(x) = 2
Step-by-step explanation:
A.) The two given functions are:
f(x) = (x + 2)^2 and g(x) = 3(x - 1)
Open the bracket of the two functions
f(x) = (x + 2)^2
f(x) = x^2 + 2x + 2x + 4
f(x) = x^2 + 4x + 4
and
g(x) = 3(x - 1)
g(x) = 3x - 3
To find gf(x), substitute f(x) for x in g(x)
gf(x) = 3( x^2 + 4x + 4 ) - 3
gf(x) = 3x^2 + 12x + 12 - 3
gf(x) = 3x^2 + 12x + 9
Where
a = 3, b = 12, c = 9
B.) To find g '(12), you must first find the inverse function of g(x) that is g'(x)
To find g'(x), let g(x) be equal to y. Then, interchange y and x for each other and make y the subject of formula
Y = 3x + 3
X = 3y + 3
Make y the subject of formula
3y = x - 3
Y = x/3 - 3/3
Y = x/3 - 1
Therefore, g'(x) = x/3 - 1
For g'(12), substitute 12 for x in g' (x)
g'(x) = 12/4 - 1
g'(x) = 3 - 1
g'(x) = 2.