Answer:
C. He should have added t instead of subtracting t.
Step-by-step explanation:
Answer:
The probability that the mean daily precipitation will be 0.11 inches or less for a random sample of November days
P(X≤ 0.11) = 0.4404
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the mean of the Population = 0.10 inches
Given that the standard deviation of the population = 0.07inches
Let 'X' be a random variable in a normal distribution

<u><em>Step(ii):-</em></u>
The probability that the mean daily precipitation will be 0.11 inches or less for a random sample of November days
P(X≤ 0.11) = P(Z≤0.1428)
= 1-P(Z≥0.1428)
= 1 - ( 0.5 +A(0.1428)
= 0.5 - A(0.1428)
= 0.5 -0.0596
= 0.4404
<u><em>Final answer:-</em></u>
The probability that the mean daily precipitation will be 0.11 inches or less for a random sample of November days
P(X≤ 0.11) = 0.4404
Answer:
Step-by-step explanation:
Given

Required
Determine the type of roots
Represent Discriminant with D; such that

D is calculated as thus

And it has the following sequence of results
When
then the roots of the quadratic equation are real but not equal
When
then the roots of the quadratic equation are real and equal
When
then the roots of the quadratic equation are complex or imaginary
Given that
; This means that
and base on the above analysis, we can conclude that the roots of the quadratic equation are complex or imaginary
Answer:
20
Step-by-step explanation: