Answer: -3 ≤ x ≤ -1
Step-by-step explanation:
1 ≤ 3 - 4x ≤ 9
1 + 3 ≤ - 4x ≤ 9 + 3; Add 3 on all sides
4 ≤ -4x ≤ 12
1 ≤ -x ≤ 3; Divide 4 on all sides
-1 ≥ x ≥ -3; Multiply -1 on all sides(FYI: When multiplying or dividing negative numbers in inequalities, make sure to reverse the signs as well)
Answer: We are given the number 173.514
Each of the digits in this number has the following place value:
![\begin{gathered} 1\rightarrow\text{ Hundreds} \\ 7\rightarrow\text{ Tens} \\ 3\rightarrow\text{ Ones} \\ \text{.}\rightarrow\text{ Decimal Point} \\ 5\rightarrow\text{ Tenth} \\ 1\rightarrow\text{ Hundreth} \\ 4\rightarrow\text{ Thousandth} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%201%5Crightarrow%5Ctext%7B%20Hundreds%7D%20%5C%5C%207%5Crightarrow%5Ctext%7B%20Tens%7D%20%5C%5C%203%5Crightarrow%5Ctext%7B%20Ones%7D%20%5C%5C%20%5Ctext%7B.%7D%5Crightarrow%5Ctext%7B%20%20Decimal%20Point%7D%20%5C%5C%205%5Crightarrow%5Ctext%7B%20Tenth%7D%20%5C%5C%201%5Crightarrow%5Ctext%7B%20%20Hundreth%7D%20%5C%5C%204%5Crightarrow%5Ctext%7B%20%20Thousandth%7D%20%5Cend%7Bgathered%7D)
Secondly, We have to identify the numbers in digit 185.712
First, let the number of skis rented by x and the number of snowboards rented by y. We can then assemble the first equation from the amount of money made from the rentals.
44x + 58y = 2232
The second equation can come from the fact that 9 more skis were rented than snowboards.
y = x - 9
Therefore our system is:
44x + 58y = 2232
y = x - 9
We have a right triangle with a 15m hypotenuse and a 8m leg. If we use x for the missing leg then the Pythagorean Theorem states that:
![15^2=8^2+x^2](https://tex.z-dn.net/?f=15%5E2%3D8%5E2%2Bx%5E2)
Then we have to solve that equation for x:
![\begin{gathered} x^2=15^2-8^2=225-64 \\ x^2=161 \\ x=\sqrt[]{161} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5E2%3D15%5E2-8%5E2%3D225-64%20%5C%5C%20x%5E2%3D161%20%5C%5C%20x%3D%5Csqrt%5B%5D%7B161%7D%20%5Cend%7Bgathered%7D)
So the answer is the square root of 161.
The answer is b. Ordered pairs