Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
First get the factors of 24: 2*2*2*3Then the factors of 9: 3*3 Comparing the factors, the GCF is 3 Then you can rewrite the expression: 3*8 + 3*3 At this point, I'm not sure whether what you mean is really distributive property or not since this case is more of a factoring. 3*(8+3)
Answer:
4,8,12 hope that helps heeeeheheʘ‿ʘ
Answer:
At 25 = 6.8612mm
At 50 years = 5.422mm
Step-by-step explanation:
Equation,
d = 2.115Logₑa + 13.669
d = diameter of the pupil
a = number of years
Note : Logₑa = In a (check logarithmic rule)
d = 2.115Ina + 13.669
1. At 25 years,
d = -2.115In25 + 13.669
d = -2.115 × 3.2188 + 13.669
d = -6.807762 + 13.669
d = 6.8612mm
At 25 years, the pupil shrinks by 6.86mm
2. At 50 years,
d = -2.1158In50 + 13.669
d = -2.1158 * 3.912 + 13.669
d = -8.2770 + 13.699
d = 5.422mm
At 50 years, the pupil shirks by 5.422mm
To save this question, I had to plug in the values into the equation.
Solving for Logₑa might be difficult, so instead I used Inx which is the same thing. Afterwards, i substituted in the values and solve the equation for each years.
Answer:
B. f(x)= 
Step-by-step explanation: