Answer:
0.87
Step-by-step explanation:
y = ab^x
b is the rate of decay if it is between 0 and 1. Here, b = 0.87.
Answer: 0.87
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:
![P(X](https://tex.z-dn.net/?f=P%28X%3C8%29%20%3D%20P%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,
![NORMSDIST(6.366)-NORMSDIST(-1.47)](https://tex.z-dn.net/?f=%20NORMSDIST%286.366%29-NORMSDIST%28-1.47%29%20)
0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000
Perimeter of rectangle:
P = 2(L + W)
P = 250 (given)
L = 3W - 35 (given)
250 = 2(3W -35 + W) ↔ 125 = 4W - 35
4W = 125 +35 =160 And W = 40 ft
And L = 3x40 - 35 = 85 ft
Answer:
First number = 22
Second number = 24
Step-by-step explanation:
Let the first number = x
Let the second number = x + 2
According to the question ,
The sum of two even consecutive ingers = 46.
so,
x + x + 2 = 46
2x + 2 = 46
2x = 46 - 2
2x = 44
x = 44 / 2
x = 22
∴ FIRST NUMBER = X
= 22
SECOND NUMBER = X + 2
= 22 + 2
= 24.
Input is 4
so y=-2(4)+11
y=-8+11
y=11-8
y=3
Ans
(4,3)