The expression that gives an angle that is coterminal with 300 is 300-720. Two angles are said to be coterminal if when they are drawn in a standard position, their terminal sides are on the same location. The expression gives an angle of 420 where when it is drawn the terminal sides are on the same location with the 300.
Someone asked the same question here before, check it out
Answer:
Step-by-step explanation:
The volume of a rectanguiar shape like this one is V = L * W * H, where the letters represent Length, Width and Height. Here L is the longest dimension and is 28 - 2x; W is the width and is 22-2x; and finally, x is the height. Thus, the volume of this box must be
V(x) = (28 - 2x)*(22 - 2x)*x
and we want to maximize V(x).
One way of doing that is to graph V(x) and look for any local maximum of the graph. We'd want to determine the value of x for which V(x) is a maximum.
Another way, for those who know some calculus, is to use the first and second derivatives to identify the value of x at which V is at a maximum.
I have provided the function that you requested. If you'd like for us to go all the way to a solution, please repost your question.
Answer: b) rolled three times, number of 2s rolled
d) rolled twice, number of odds rolled
<u>Step-by-step explanation:</u>
A binomial experiment must meet the following criteria:
- There must be a fixed number of trials (rolls)
- Each trial (roll) is independent of the others
- There are only two outcomes (success or fail)
- The probability of each outcome remains constant from trial to trial
a) rolled twice --> satisfies #1 & #2 (n = 2)
X is the sum --> fails #3 (more than two outcomes)
b) rolled three times --> satisfies #1 & #2 (n = 3)
X is the number of 2s rolled --> satisfies #3 & #4 (P success = 1/6)
c) rolled an unknown number of times - fails #1
d) rolled twice --> satisfies #1 & #2 (n = 2)
X is the number of odds rolled --> satisfies #3 & #4 (P success = 1/2)
Answer:
Step-by-step explanation:
Use the Quadratic Formula.
-x² - 4x + 16 = 0
x = [4±√(4²-4(-1)(16)]/[2(-1)] = [4±√80]/(-2) = [4±4√5]/(-2) = -2±2√5