Answer:
36°, 72°, 72°
Step-by-step explanation:
let ∠BAC=A ∠ABC=B ∠ACB=C
AB = BM (known) ∠BAM = ∠AMB = A
AB = AK ∠ABK = ∠AKB = B
A = B/2 + C (exterior angle, ΔBMC) ...(1)
B = A/2 + C (exterior angle, ΔAKC) ...(2)
A - B = (B - A) / 2 (1) - (2)
2A - 2B = B - A 3A = 3B <u>A = B</u>
A+B+C = 180 2A + C = 180 .....(3)
(180-A) + B/2 + C = 180 (ΔBMC, sum of interior angle)
-A + B/2 + C = 0 -A/2 + C = 0 .....(4)
(3) - (4): 5/2 A = 180 A = 2*180/5 = 72
B = 72 C = 180-72-72 = 36
<u />