Answer:

Step-by-step explanation:
Let
n -----> number of tickets
C ----> represent the cost of buy n tickets online
we have the ordered pairs
(1,16.50) and (2,30.50)
<em>Find out the slope of the linear equation</em>
The formula to calculate the slope between two points is equal to
substitute the values
<em>Find the equation of the line in slope intercept form</em>

we have

substitute



substitute

The domain of the function is all positive integers (whole numbers) including zero
{0,1,2,3,4,...}
You would half to take 8×(8×pi r squared)
Answer:
The perimeter (to the nearest integer) is 9.
Step-by-step explanation:
The upper half of this figure is a triangle with height 3 and base 6. If we divide this vertically we get two congruent triangles of height 3 and base 3. Using the Pythagorean Theorem we find the length of the diagonal of one of these small triangles: (diagonal)^2 = 3^2 + 3^2, or (diagonal)^2 = 2*3^2.
Therefore the diagonal length is (diagonal) = 3√2, and thus the total length of the uppermost two sides of this figure is 6√2.
The lower half of the figure has the shape of a trapezoid. Its base is 4. Both to the left and to the right of the vertical centerline of this trapezoid is a triangle of base 1 and height 3; we need to find the length of the diagonal of one such triangle. Using the Pythagorean Theorem, we get
(diagonal)^2 = 1^2 + 3^2, or 1 + 9, or 10. Thus, the length of each diagonal is √10, and so two diagonals comes to 2√10.
Then the perimeter consists of the sum 2√10 + 4 + 6√2.
which, when done on a calculator, comes to 9.48. We must round this off to the nearest whole number, obtaining the final result 9.
Answer:
(b, -a)
Step-by-step explanation:
First note that the rule for a rotation by 270° about the origin is (x,y)→(y,−x)
Note that the coordinates were swapped and the x coordinates negated. Similarly;
Given the coordinate of the point U as (a, b), if the triangle is rotated 270degrees clockwise, the resulting coordinate will be (b, -a)
Answer:
we know that
The volume of the prism is equal to
V=L*W*H
where
L is the length side of the base of the prism
W is the width side of the base of the prism
H is the height of the prism
In this problem we have
L=\frac{d-2}{3d-9}=\frac{d-2}{3(d-3)}
W=\frac{4}{d-4}
H=\frac{2d-6}{2d-4}=\frac{2(d-3)}{2(d-2)}=\frac{(d-3)}{(d-2)}
Substitute the values in the formula
V=\frac{d-2}{3(d-3)}*\frac{4}{d-4}*\frac{(d-3)}{(d-2)}=\frac{4}{3(d-4)}=\frac{4}{3d-12}
therefore
the answer is the option
4/3d-12
Step-by-step explanation: