Answer:
Now, we can visually see that 6/8, is equivalent to 3/4, because the total height of the colored parts remains the same. Next, let's multiply the numerator 6, with 3, and the denominator 8, with 3
Step-by-step explanation:
please, and i hope that is a answer
Answer:
Simply create a scatter plot then write in a line of best fit.
I'm not 100% sure
(2165-59)/3=
.............
As you increase the subintervals the area will be closer and closer to the real value. In other words your approximation gets better.
As you increase the intervals, there will be more rectanagles and the added area of these rectangles are converging towards the actual area under the curve.
<h3>
Answer: Choice A</h3>
![x^2\left(\sqrt[4]{x^2}\right)](https://tex.z-dn.net/?f=x%5E2%5Cleft%28%5Csqrt%5B4%5D%7Bx%5E2%7D%5Cright%29)
=====================================================
Explanation:
The fourth root of x is the same as x^(1/4)
I.e,
![\sqrt[4]{x} = x^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%20%3D%20x%5E%7B1%2F4%7D)
The same applies to x^10 as well
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D)
Multiply the exponents 10 and 1/4 to get 10/4
![\sqrt[4]{x^{10}} = \left(x^{10}\right)^{1/4} = x^{10*1/4} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%5Cleft%28x%5E%7B10%7D%5Cright%29%5E%7B1%2F4%7D%20%3D%20x%5E%7B10%2A1%2F4%7D%20%3D%20x%5E%7B10%2F4%7D)
![\sqrt[4]{x^{10}} = x^{10/4}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20x%5E%7B10%2F4%7D)
-----------------------
If we have an expression in the form x^(m/n), with m > n, then we can simplify it into an equivalent form as shown below
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
The 'a' and 'b' are found through dividing m/n
m/n = a remainder b
'a' is the quotient, b is the remainder
-----------------------
The general formula can easily be confusing, so let's replace m and n with the proper numbers. In this case, m = 10 and n = 4
m/n = 10/4 = 2 remainder 2
We have a = 2 and b = 2
So
![x^{m/n} = x^a\sqrt[n]{x^b}](https://tex.z-dn.net/?f=x%5E%7Bm%2Fn%7D%20%3D%20x%5Ea%5Csqrt%5Bn%5D%7Bx%5Eb%7D)
turns into
![x^{10/4} = x^2\sqrt[4]{x^2}](https://tex.z-dn.net/?f=x%5E%7B10%2F4%7D%20%3D%20x%5E2%5Csqrt%5B4%5D%7Bx%5E2%7D)
which means
![\sqrt[4]{x^{10}} = {x^2} \sqrt[4]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E%7B10%7D%7D%20%3D%20%7Bx%5E2%7D%20%5Csqrt%5B4%5D%7Bx%5E2%7D)