1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
2 years ago
7

BIDEN OR TrUmP have a nice day

Mathematics
2 answers:
lana [24]2 years ago
6 0

Answer:

biden

Step-by-step explanation:

sammy [17]2 years ago
3 0

Answer:

BIDEN

Step-by-step explanation:

no trump hehehhehehe

You might be interested in
Please help last question:((
jasenka [17]

Answer:

7. C(N(h))=33hx+460h

8. about $13.94 is the cost

Step-by-step explanation:

7. C(x)=(33x+460)(N(h))=(N(40)h)--C(x)=(33x+460)(40h)--C(x)=1320hx+18400h--simplified to C(N(h))=33hx+460h

8. C(N(10))=33(10)x+460(10)--C(N(10))=330x+4600--4600/330=about13.94

5 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Is my answer correct?
Alexandra [31]
Yes your answer would be correct!  :)
8 0
3 years ago
Read 2 more answers
Consider the quadratic function:<br> f(x) = x2 – 8x – 9
Bumek [7]

Solved in quadratic function
The answer :
X=(9,-1)
7 0
2 years ago
How do I solve 1 1/2c = 6
quester [9]
1  \frac{1}{2} c = 6 \\ \\  \frac{2 + 1}{2} c = 6 \ / \ convert \ to \ improper \ fraction \\ \\  \frac{3}{2} c = 6 \ / \ simplify \\ \\  \frac{3c}{2} = 6 \ / \ simplify \\ \\ 3c = 6 \times 2 \ / \ multiply \ each \ side \ by \ 2 \\ \\ 3c = 12 \ / \ simplify \\ \\ c =  \frac{12}{3} \ / \ divide \ each \ side \ by \ 3 \\ \\ c = 4 \ / \ simplify \\ \\

So, your answer to this problem is c = 4.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Patricia paid $584 for 8 nights at a hotel. Find the unit rate
    8·2 answers
  • the time t required to cut the grass in a park varies inversely as the number of workers cutting the grass w. If 6 workers can c
    6·1 answer
  • A man buys a dozen computers for $15,000. He sells each of the computers for $2150. What percent profit does he earn?
    14·1 answer
  • What is the degree when all sides of a triangle is added?
    11·2 answers
  • Answer you get brainliest and we can be buddies. (i am very loney)
    8·2 answers
  • Which situation demonstrates the law of large numbers
    12·1 answer
  • The measure of an angle is 39°. What is the measure of its complementary angle?
    13·2 answers
  • Total of y and five divided by x
    7·2 answers
  • What are the unknown measurements of the triangle? Round your answers to the nearest hundredth as needed.
    8·1 answer
  • PLEASE HELP ASAP TENTH GRADE GEOMETRY
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!