Answer:
27
Step-by-step explanation:
The answer is 27, because 9 x 3 = 27 and the smallest number that is the same is 27.
Hope this helps!
Answer:
10/6
Step-by-step explanation:
all you have to do is divide x2 or 5 in this case - x2 or -5 with y2 or 3 - y1 or 3 so it would be
(5--5)/(3--3)
and 2 negatives are a positive so it would turn to
5+5/3+3 or 10/6
please rate 5 stars i would really appreciate it
The function "choose k from n", nCk, is defined as
nCk = n!/(k!*(n-k)!) . . . . . where "!" indicates the factorial
a) No position sensitivity.
The number of possibilities is the number of ways you can choose 5 players from a roster of 12.
12C5 = 12*11*10*9*8/(5*4*3*2*1) = 792
You can put 792 different teams on the floor.
b) 1 of 2 centers, 2 of 5 guards, 2 of 5 forwards.
The number of possibilities is the product of the number of ways, for each position, you can choose the required number of players from those capable of playing the position.
(2C1)*(5C2)*(5C2) = 2*10*10 = 200
You can put 200 different teams on the floor.
Part 1) we know that
m∠5=44° m∠11=86°
m∠2=m∠5------> by vertical angles
m∠2=44°
m∠13=m∠11------> by vertical angles
m∠13=86°
m∠12+m∠13=180°-----> supplementary angles
m∠12=180-86-----> m∠12=94°
m∠14=m∠12----> by vertical angles
m∠14=94°
m∠1=m∠11----> by corresponding angles
m∠1=86°
m∠4=m∠1----> by vertical angles
m∠4=86°
m∠2+m∠1+m∠6=180
m∠6=180-(86+44)----> 50°
m∠6=50°
m∠3=m∠6----> by vertical angles
m∠3=50°
m∠8=m∠3----> by corresponding angles
m∠8=50°
m∠8+m∠7=180°-----> supplementary angles
m∠7=180-50----> 130°
m∠7=130°
m∠10=m∠6----> by corresponding angles
m∠10=50°
m∠10+m∠9=180°-----> supplementary angles
m∠9=180-50-----> 130°
m∠9=130°
the answers Part 1) are
m∠1=86°
m∠2=44°
m∠3=50°
m∠4=86°
m∠5=44°
m∠6=50°
m∠7=130°
m∠8=50°
m∠9=130°
m∠10=50°
m∠11=86°
m∠12=94°
m∠13=86°
m∠14=94°
Part 2)
a) what is m∠TPR?
in the right triangle PTR
m∠PTR+m∠TPR+m∠TRP=180° ( the sum of internal angles of triangle is equal to 180 degrees)
m∠PTR=30°
m∠TRP=90°
so
m∠TPR=180-(90+30)----> 60°
the answer Part 2a) is
m∠TPR=60°
b) what is the length in inches of segment PR?
in the right triangle PTR
sin 30=PR/TP-----> PR=TP*sin 30-----> PR=14*(1/2)----> 7 in
the answer Part 2b) is
PR=7 in
c) what is the length in inches of segment TR?
in the right triangle PTR
cos 30=TR/PT-----> TR=PT*cos 30-----> TR=14*(√3/2)---> TR=7√3 in
the answer Part 2c) is
TR=7√3 in
d) what is the length in inches of segment PQ?
in the right triangle PQR
PR=7 in
RQ=PR-----> by angle 45°
so
RQ=7 in
applying the Pythagoras Theorem
PQ²=RQ²+PR²-----> 7²+7²-----> PQ²=98-----> PQ=√98 in---> PQ=7√2 in
the answer Part 2d) is
PQ=7√2 in
Part 3) Patrice buys a block of wax in the shape of a right rectangular prism. The dimensions of the block are 20 cm by 9 cm by 8 cm.
<span><span>(a) </span>What is the volume of the block?
volume of the prism=20*9*8-----> 1440 cm³
the answer Part 3 a) is
the volume of the block is 1440 cm³
<span>
Patrice melts the wax and creates a candle in the shape of a circular cylinder that has a diameter of 10 cm and a height of 15 cm.<span>(b) </span>To the nearest centimeter, what is the volume of the candle?
</span></span>volume of a cylinder=pi*r²*h
diameter=10 cm
radius r=10/2----> 5 cm
h=15 cm
volume of a cylinder=pi*5²*15----> 1177.5 cm³-----> 1178 cm³
the answer Part 3b) is
the volume of the candle is 1178 cm³
<span>Patrice decides to use the remaining wax to create a candle in the shape of a cube.<span>(c) </span>To the nearest centimeter, what is the length of the side of the cube?
</span>
the remaining wax=volume of the prism-volume of a cylinder
=1440-1178-----> 262 cm³
volume of a cube=b³
where b is the length side of the cube
262=b³-------b=∛262-----> b=6.40 cm-----> b=6 cm
the answer Part 3c) is
the length of the side of the cube is 6 cm