Answer:
36 degrees.
Step-by-step explanation:
8+3+4=15
180/15=12
12x3=36 degrees.
Substitute a number for each variable
Ex.
2x x=5
(2)(5)
=10
Answer: To know whether a radical expression is in simplest form or not you should put the numbers and letters inside the radical in terms of prime factors. Then, the radical expression is in the simplest form if all the numbers and letters inside the radical are prime factors with a power less than the index of the radical
Explanation:
Any prime factor raised to a power greater than the index of the root can be simplified and any factor raised to a power less than the index of the root cannot be simplified
For example simplify the following radical in its simplest form:
![\sqrt[5]{3645 a^8b^7c^3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3645%20a%5E8b%5E7c%5E3%7D%20)
1) Factor 3645 in its prime factors: 3645 = 3^6 * 5
2) Since the powr of 3 is 6, and 6 can be divided by the index of the root, 5, you can simplify in this way:
- 6 ÷ 5 = 1 with reminder 1, so 3^1 leaves the radical and 3^1 stays in the radical
3) since the factor 5 has power 1 it can not leave the radical
4) the power of a is 8, then:
8 ÷ 5 = 1 with reminder 3 => a^1 leaves the radical and a^3 stays inside the radical.
5) the power of b is 7, then:
7 ÷ 5 = 1 with reminder 2 => b^1 leaves the radical and b^2 stays inside the radical
6) the power of c is 3. Since 3 is less than 5 (the index of the radical) c^3 stays inside the radical.
7) the expression simplified to its simplest form is
![3ab \sqrt[5]{3.5.a^3b^2c^3}](https://tex.z-dn.net/?f=3ab%20%5Csqrt%5B5%5D%7B3.5.a%5E3b%5E2c%5E3%7D%20)
And you know
it cannot be further simplified because all the numbers and letters inside the radical are prime factors with a power less than the index of the radical.
Let l, t, b represent the numbers of lions, tigers, bears, respectively.
2l +3t +3b = 156 . . . . . . . 156 meals per day are supplied
l +t = 3b . . . . . . . . . . . . . . there are 3 times as many great cats as bears
l +t +b = 68 . . . . . . . . . . . there are a total of 68 animals
_____
The last 2 equations tell you
.. 4b = 68
.. b = 17
Subtracting 3 times the last equation from the first gives
.. -l = -48
There are 48 lions, 3 tigers, and 17 bears.
Answer:
Perimeter = 32.44 units
Area = 30 square units
Step-by-step explanation:
Given
Vertices
A(2,8), B(16,2) and C(6,2)
WE have to determine the lengths of all sides before finding the perimeter and area.
The formula of modulus is:

So the perimeter is:

Using hero's formula,

Rounding off will give us 30 square units ..