The answer is b. If your problem is y=1/2x-3
1562 divided by 35= 45 with a remainder of 32
<span><span>
The correct answers are:</span><span>
(1) The vertical asymptote is x = 0
(2) The horizontal asymptote is y = 0
</span><span>
Explanation:</span><span>(1) To find the vertical asymptote, put the denominator of the rational function equals to zero.
Rational Function = g(x) = </span></span>

<span>
Denominator = x = 0
Hence the vertical asymptote is x = 0.
(2) To find the horizontal asymptote, check the power of x in numerator against the power of x in denominator as follows:
Given function = g(x) = </span>

<span>
We can write it as:
g(x) = </span>

<span>
If power of x in numerator is less than the power of x in denomenator, then the horizontal asymptote will be y=0.
If power of x in numerator is equal to the power of x in denomenator, then the horizontal asymptote will be y=(co-efficient in numerator)/(co-efficient in denomenator).
If power of x in numerator is greater than the power of x in denomenator, then there will be no horizontal asymptote.
In above case, 0 < 1, therefore, the horizontal asymptote is y = 0
</span>
I think its the first one
Answer:
Step-by-step explanation:
(x+3)² -5 =0 , use the formula (a+b) ² = a²+b²+2ab
x²+9 +6x -5 =0 , combine like terms
x²+6x +4 =0, use the quadratic formula x = (-b±√b²-4ac)/2a
x= (-6 ±√6²-4*1*4)/2*1
x= (-6 ± √36-16) /2
x= (-6±√20)/2
x=(-6 +2√5)/2 and x=( -6-2√5) /2, factor 2 in the numerator and simplify
x= -3 +√5 and x= -3 -√5