Answer:
the absolute maximum value is 89.96 and
the absolute minimum value is 23.173
Step-by-step explanation:
Here we have cotangent given by the following relation;
so that the expression becomes
f(t) = 9t +9/tan(t/2)
Therefore, to look for the point of local extremum, we differentiate, the expression as follows;
f'(t) =
= ![\frac{9\cdot sin^{2}(t)-\left (9\cdot cos^{2}(t)-18\cdot cos(t)+9 \right )}{2\cdot cos^{2}(t)-4\cdot cos(t)+2}](https://tex.z-dn.net/?f=%5Cfrac%7B9%5Ccdot%20sin%5E%7B2%7D%28t%29-%5Cleft%20%289%5Ccdot%20cos%5E%7B2%7D%28t%29-18%5Ccdot%20cos%28t%29%2B9%20%20%5Cright%20%29%7D%7B2%5Ccdot%20cos%5E%7B2%7D%28t%29-4%5Ccdot%20cos%28t%29%2B2%7D)
Equating to 0 and solving gives
![\frac{9\cdot sin^{2}(t)-\left (9\cdot cos^{2}(t)-18\cdot cos(t)+9 \right )}{2\cdot cos^{2}(t)-4\cdot cos(t)+2} = 0](https://tex.z-dn.net/?f=%5Cfrac%7B9%5Ccdot%20sin%5E%7B2%7D%28t%29-%5Cleft%20%289%5Ccdot%20cos%5E%7B2%7D%28t%29-18%5Ccdot%20cos%28t%29%2B9%20%20%5Cright%20%29%7D%7B2%5Ccdot%20cos%5E%7B2%7D%28t%29-4%5Ccdot%20cos%28t%29%2B2%7D%20%3D%200)
![t=\frac{4\pi n_1 +\pi }{2} ; t = \frac{4\pi n_2 -\pi }{2}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B4%5Cpi%20n_1%20%2B%5Cpi%20%7D%7B2%7D%20%3B%20t%20%3D%20%5Cfrac%7B4%5Cpi%20n_2%20-%5Cpi%20%7D%7B2%7D)
Where n
is an integer hence when n₁ = 0 and n₂ = 1 we have t = π/4 and t = 3π/2 respectively
Or we have by chain rule
f'(t) = 9 -(9/2)csc²(t/2)
Equating to zero gives
9 -(9/2)csc²(t/2) = 0
csc²(t/2) = 2
csc(t/2) = ±√2
The solutions are, in quadrant 1, t/2 = π/4 such that t = π/2 or
in quadrant 2 we have t/2 = π - π/4 so that t = 3π/2
We then evaluate between the given closed interval to find the absolute maximum and absolute minimum as follows;
f(x) for x = π/4, π/2, 3π/2, 7π/2
f(π/4) = 9·π/4 +9/tan(π/8) = 28.7965
f(π/2) = 9·π/2 +9/tan(π/4) = 23.137
f(3π/2) = 9·3π/2 +9/tan(3·π/4) = 33.412
f(7π/2) = 9·7π/2 +9/tan(7π/4) = 89.96
Therefore the absolute maximum value = 89.96 and
the absolute minimum value = 23.173.