Answer:
We have to prove
sin(α+β)-sin(α-β)=2 cos α sin β
We will take the left hand side to prove it equal to right hand side
So,
=sin(α+β)-sin(α-β) Eqn 1
We will use the following identities:
sin(α+β)=sin α cos β+cos α sin β
and
sin(α-β)=sin α cos β-cos α sin β
Putting the identities in eqn 1
=sin(α+β)-sin(α-β)
=[ sin α cos β+cos α sin β ]-[sin α cos β-cos α sin β ]
=sin α cos β+cos α sin β- sinα cos β+cos α sin β
sinα cosβ will be cancelled.
=cos α sin β+ cos α sin β
=2 cos α sin β
Hence,
sin(α+β)-sin(α-β)=2 cos α sin β
Answer:
Step-by-step explanation:
66.6344086
Answer:
Step-by-step explanation:
hello :
X/2 + 3/8 = 1
X/2 + 3/8 -3/8= 1-3/8
X/2 = 5/3 means : 3x=10 so : x=10/3
The answer to the above math expression is . See the computation below.
<h3>What is the calculation justifying the above?</h3>
First we solve for the numerator. The numerator is:
7√2 - 2√16
Where:
7√2 = 9.89949493661; and
2√16 = 8
Hence,
7√2 - 2√16 = 1.89949493661
Next we solve for the denominator. This is given as:
3√8=8.48528137424
Hence,
(7√2 - 2√16)/3√8 = 1.89949493661/8.48528137424
= 0.22385762508
0.224
Learn more about math expressions:
brainly.com/question/4344214
#SPJ1
Neither
tell me if you want explanation