Hello,
(-5x-3)(-5x+
3) = (-5x)² - 3²
Answer:
x=1
Step-by-step explanation:
1-2x=-3x+2
-1=-x
1=x
Answer:
There are two choices for angle Y:
for
,
for
.
Step-by-step explanation:
There are mistakes in the statement, correct form is now described:
<em>In triangle XYZ, measure of angle X = 49°, XY = 18 and YZ = 14. Find the measure of angle Y:</em>
The line segment XY is opposite to angle Z and the line segment YZ is opposite to angle X. We can determine the length of the line segment XZ by the Law of Cosine:
(1)
If we know that
,
and
, then we have the following second order polynomial:
![14^{2} = XZ^{2} + 18^{2} - 2\cdot (18)\cdot XZ\cdot \cos 49^{\circ}](https://tex.z-dn.net/?f=14%5E%7B2%7D%20%3D%20XZ%5E%7B2%7D%20%2B%2018%5E%7B2%7D%20-%202%5Ccdot%20%2818%29%5Ccdot%20XZ%5Ccdot%20%5Ccos%2049%5E%7B%5Ccirc%7D)
(2)
By the Quadratic Formula we have the following result:
![XZ \approx 15.193\,\lor\,XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193%5C%2C%5Clor%5C%2CXZ%20%5Capprox%208.424)
There are two possible triangles, we can determine the value of angle Y for each by the Law of Cosine again:
![XZ^{2} = XY^{2} + YZ^{2} - 2\cdot XY \cdot YZ \cdot \cos Y](https://tex.z-dn.net/?f=XZ%5E%7B2%7D%20%3D%20XY%5E%7B2%7D%20%2B%20YZ%5E%7B2%7D%20-%202%5Ccdot%20XY%20%5Ccdot%20YZ%20%5Ccdot%20%5Ccos%20Y)
![\cos Y = \frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ}](https://tex.z-dn.net/?f=%5Ccos%20Y%20%3D%20%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D)
![Y = \cos ^{-1}\left(\frac{XY^{2}+YZ^{2}-XZ^{2}}{2\cdot XY\cdot YZ} \right)](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%20%5E%7B-1%7D%5Cleft%28%5Cfrac%7BXY%5E%7B2%7D%2BYZ%5E%7B2%7D-XZ%5E%7B2%7D%7D%7B2%5Ccdot%20XY%5Ccdot%20YZ%7D%20%5Cright%29)
1) ![XZ \approx 15.193](https://tex.z-dn.net/?f=XZ%20%5Capprox%2015.193)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-15.193^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-15.193%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 54.987^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2054.987%5E%7B%5Ccirc%7D)
2) ![XZ \approx 8.424](https://tex.z-dn.net/?f=XZ%20%5Capprox%208.424)
![Y = \cos^{-1}\left[\frac{18^{2}+14^{2}-8.424^{2}}{2\cdot (18)\cdot (14)} \right]](https://tex.z-dn.net/?f=Y%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B18%5E%7B2%7D%2B14%5E%7B2%7D-8.424%5E%7B2%7D%7D%7B2%5Ccdot%20%2818%29%5Ccdot%20%2814%29%7D%20%5Cright%5D)
![Y \approx 27.008^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2027.008%5E%7B%5Ccirc%7D)
There are two choices for angle Y:
for
,
for
.
The radius of the container is 2 centimeter
<h3><u>Solution:</u></h3>
Given that a container of candy is shaped like a cylinder
Given that volume = 125.6 cubic centimeters
Height of conatiner = 10 centimeter
To find: radius of the container
We can use volume of cylinder formula and obatin the radius value
<em><u>The volume of cylinder is given as:</u></em>
![\text {volume of cylinder }=\pi r^{2} h](https://tex.z-dn.net/?f=%5Ctext%20%7Bvolume%20of%20cylinder%20%7D%3D%5Cpi%20r%5E%7B2%7D%20h)
Where "r" is the radius of cylinder
"h" is the height of cylinder and
is constant has value 3.14
Substituting the values in formula, we get
![\begin{array}{l}{125.6=3.14 \times r^{2} \times 10} \\\\ {r^{2}=\frac{125.6}{31.4}} \\\\ {r^{2}=4}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bl%7D%7B125.6%3D3.14%20%5Ctimes%20r%5E%7B2%7D%20%5Ctimes%2010%7D%20%5C%5C%5C%5C%20%7Br%5E%7B2%7D%3D%5Cfrac%7B125.6%7D%7B31.4%7D%7D%20%5C%5C%5C%5C%20%7Br%5E%7B2%7D%3D4%7D%5Cend%7Barray%7D)
Taking square root on both sides,
![r = \sqrt{4}\\\\r = 2](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%7B4%7D%5C%5C%5C%5Cr%20%3D%202)
Thus the radius of the container is 2 centimeter
0, 3
- 10, 15
= -10, -12
therefore, the slope is 6/5, and the intercept (c) is as supplied, 3.
the equation, y=mx+c or y = a + bx, can be applied here where m or b = 6/5, and a or c = 3.
therefore the equation is y=6/5x+3.
To test this, you can put in y = 10(6/5)+3, which spits out y = 15. This way we know it *should* work.