1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
11

I NEED HELP ON MATH PLS

Mathematics
1 answer:
kicyunya [14]3 years ago
7 0

Answer:

5/2 or 2½ or 2.5

Step-by-step explanation:

20/8 = 2.5

10/4 = 2.5

You might be interested in
The question is on the picture
Kamila [148]

answer:

ABCD is not congruent to KLMN

ABCD cannot be mapped onto KLMN

3 0
2 years ago
Find the derivative.
krek1111 [17]

Answer:

\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

General Formulas and Concepts:

<u>Algebra I</u>

Terms/Coefficients

  • Expanding/Factoring

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \frac{\sqrt{x}}{e^x}

<u>Step 2: Differentiate</u>

  1. Derivative Rule [Quotient Rule]:                                                                   \displaystyle f'(x) = \frac{(\sqrt{x})'e^x - \sqrt{x}(e^x)'}{(e^x)^2}
  2. Basic Power Rule:                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}(e^x)'}{(e^x)^2}
  3. Exponential Differentiation:                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{(e^x)^2}
  4. Simplify:                                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{e^{2x}}
  5. Rewrite:                                                                                                         \displaystyle f'(x) = \bigg( \frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x \bigg) e^{-2x}
  6. Factor:                                                                                                           \displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
2 years ago
It is recommended that 13-year old girls get 45 milligrams of vitamin C each day . The table shows the vitamin C content of thre
dsp73
<h2> The answer is B. 600 </h2>
4 0
2 years ago
Maths functions question
yarga [219]

Answer:

a)  OA = 1 unit

b)  OB = 3 units

c)  AB = √10 units

Step-by-step explanation:

<u>Given function</u>:

g(x)=2^x

<h3><u>Part (a)</u></h3>

Point A is the y-intercept of the exponential curve (so when x = 0).

To find the y-value of Point A, substitute x = 0 into the function:

\implies g(0)=2^0=1

Therefore, A (0, 1) so OA = 1 unit.

<h3><u>Part (b)</u></h3>

If BC = 8 units then the y-value of Point C is 8.

The find the x-value of Point C, set the function to 8 and solve for x:

\begin{aligned}f(x) & = 8 \\\implies 2^x & = 8\\2^x & = 2^3\\\implies x &= 3\end{aligned}

Therefore, C (3, 8) so Point B is (3, 0).  Therefore, OB = 3 units.

<h3><u>Part (c)</u></h3>

From parts (a) and (b):

  • A = (0, 1)
  • B = (3, 0)

To find the length of AB, use the distance between two points formula:

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points.}

Therefore:

\implies \sf AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

\implies \sf AB=\sqrt{(3-0)^2+(0-1)^2}

\implies \sf AB=\sqrt{(3)^2+(-1)^2}

\implies \sf AB=\sqrt{9+1}

\implies \sf AB=\sqrt{10}\:\:units

5 0
1 year ago
How do you find a if given c and 0 (angle) in a right triangle where a is the opposite, c is the hypotenuse, b is adjacent and 0
Yakvenalex [24]
C can be found using pythagoras theorem. c2=a2+b2. Now, b is not given, but we know that cos(theta)=b/c=>b=c*cos(theta). Substituting b in the above relation, c2=a2+c2(cos(theta))^2=>c2=a2/(1-cos((theta))^2). c is the squareroot of c2. Hence c=sqrt(2/(1-cos((theta))^2))
4 0
3 years ago
Other questions:
  • Write the formula for the sum of 7 consecutive numbers if the first number is m. \
    10·2 answers
  • The equation in slope intercept form
    9·1 answer
  • Can I take a photo of my question lol
    15·1 answer
  • Suppose that 15 years ago, a benefactor set up an account for your education. This benefactor made a single deposit of $20,000 t
    5·1 answer
  • Help again geometry similarity transformations
    14·2 answers
  • Find the x- and y-intercepts of the linear function.<br> -8 - 2x + 4y = 0
    6·1 answer
  • Set up the equation and solve.<br> 5) 700 reduced by 4 times Mia's age is 500. How old is Mia?
    7·1 answer
  • Can someone help me on this.
    6·2 answers
  • bella and camila are gathering leaves for their nature collection. bella has 18 leaves. camilla has twice as many leaves as bell
    15·1 answer
  • Distance from Town A to Town B is divided into 8 equal parts. So far, the bus has traveled 12 miles. How far apart are Town A an
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!