answer:
ABCD is not congruent to KLMN
ABCD cannot be mapped onto KLMN
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
Terms/Coefficients
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Derivative Rule [Quotient Rule]:

- Basic Power Rule:

- Exponential Differentiation:

- Simplify:

- Rewrite:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
a) OA = 1 unit
b) OB = 3 units
c) AB = √10 units
Step-by-step explanation:
<u>Given function</u>:

<h3><u>Part (a)</u></h3>
Point A is the y-intercept of the exponential curve (so when x = 0).
To find the y-value of Point A, substitute x = 0 into the function:

Therefore, A (0, 1) so OA = 1 unit.
<h3><u>Part (b)</u></h3>
If BC = 8 units then the y-value of Point C is 8.
The find the x-value of Point C, set the function to 8 and solve for x:

Therefore, C (3, 8) so Point B is (3, 0). Therefore, OB = 3 units.
<h3><u>Part (c)</u></h3>
From parts (a) and (b):
To find the length of AB, use the distance between two points formula:


Therefore:





C can be found using pythagoras theorem. c2=a2+b2. Now, b is not given, but we know that cos(theta)=b/c=>b=c*cos(theta). Substituting b in the above relation, c2=a2+c2(cos(theta))^2=>c2=a2/(1-cos((theta))^2). c is the squareroot of c2. Hence c=sqrt(2/(1-cos((theta))^2))