Question..
Combine like terms to create an equivalent expression.
½ −⅙q +⅚q - ⅓
Answer:
½ −⅙q +⅚q - ⅓ is equivalent to ⅔q + ⅙
Step-by-step explanation:
Given
½ −⅙q +⅚q - ⅓
Required
Equivalence
½ −⅙q +⅚q - ⅓
We start by collecting like terms.
⅚q - ⅙q + ½ - ⅓
Factorize
(⅚ - ⅙)q + ½ - ⅓
((5 - 1)/6)q + ½ - ⅓
(4/6)q + ½ - ⅓
Reduce 4/6 to lowest term
⅔q + ½ - ⅓
Evaluate fraction
⅔q + (3 - 2)/6
⅔q + ⅙
Hence, ½ −⅙q +⅚q - ⅓ is equivalent to ⅔q + ⅙
D. f(x)=4 (5/2)^x
Are really good tool for graphing problems is Demos.com
Jake puts 6 stamps in his book every day.
30/6= 5
Jake put stamps in the book for 5 days.
So, Dan puts 5 stamps in the book every day.
5*5= 25
Dan has 25 stamps when Jake has 30.
I hope this helps!
~kaikers
Plot the equation. If you wish to solve a polynomial, let y= polynomial and plot the graph. Best set up a table of values first.
Where the graph crosses the x axis there is a solution for x. There are also solutions for other horizontal lines (y values) by looking at intersections of the graph with these lines. This technique works for linear and non linear equations. You can also use graphs to solve 2-variable systems of equations by examining where the graphs intersect one another. The disadvantage is that you may not be able to have sufficient detail for high degrees of accuracy because of the scale of the graph and drawing inaccuracies.