Answer:
1034.88J
Explanation:
Given that:
mass (m) = 11.2 g, initial temperature = 0°C, final temperature = 22°C, the specific heat capacity of water (C) = 4.2 J/g°C
Temperature difference (ΔT) = final temperature - initial temperature = 22 - 0 = 22°C
The quantity of heat (Q) required to melt the ice can be calculated from the equation:
Q = mCΔT
Q = 11.2 g × 4.2 J/g°C × 22°C
Q = 1034.88J
Best Answer: 4.52 X 10²³ atoms. Use Avogadro's number to multiply 0.750 moles times 6.022 X 10²³
D is the correct answer, you do not want to keep the fumes from numerous frogs in a room. There is no logical reason to keep the fumes inside.
Answer:
0.88g
Explanation:
The reaction equation:
2NaI + Cl₂ → 2NaCl + I₂
Given parameters:
Mass of Sodium iodide = 2.29g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we work from the known to the unknown.
First find the number of NaI from the mass given;
Number of moles =
Molar mass of NaI = 23 + 126.9 = 149.9g/mol
Now insert the parameters and solve;
Number of moles =
= 0.015mol
So;
From the balanced reaction equation;
2 moles of NaI produced 2 moles of NaCl
0.015mole of NaI will produce 0.015mole of NaCl
Therefore;
Mass = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Now;
Mass of NaCl = 0.015 x 58.5 = 0.88g