The only chemical that is a liquid at room temperature is Mercury. It's toxic, and has a high vapor pressure at room temperature.
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:

First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:

Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:

This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).
Sorry I don’t get the question Buh I’m sure you’ll get it eventually
Should be :
Lead Sulfate Tetrahydrate