Answer:As you can see from the very different numbers in the boxes above, your age changes (sometimes quite a lot) ... Mercury is the closest planet to the Sun and so has a smaller orbit path – it takes just 88 Earth days
Explanation:
Answer:
Freezing. When a liquid is cooled, the average energy of the molecules decreases. At some point, the amount of heat removed is great enough that the attractive forces between molecules draw the molecules close together, and the liquid freezes to a solid.
Note how temperature effects the motion of the atoms or molecules in a liquid. As the temperature of a solid, liquid or gas increases, the particles move more rapidly. As the temperature falls, the particles slow down. If a liquid is cooled sufficiently, it forms a solid.
<h3>I hope it helps you:)</h3>
Hello.
The answer is C.Amine
When an amine is combined (reacted) with a carboxyl group, an AMIDE + water is formed, and if you carry on heating under a vacuum, an imidazoline is formed.
Have a nice day
An object that is not already moving will begin to move in the direction of the larger force. An object that is already moving will change its speed and/or its direction.
The answer for the following problem is mentioned below.
- <u><em>Therefore the final moles of the gas is 14.2 × </em></u>
<u><em> moles.</em></u>
Explanation:
Given:
Initial volume (
) = 230 ml
Final volume (
) = 860 ml
Initial moles (
) = 3.8 ×
moles
To find:
Final moles (
)
We know;
According to the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of the moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
So;
V ∝ n
= 
where,
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial moles of the gas
(
) represents the final moles of the gas
Substituting the above values;
= 
= 14.2 ×
moles
<u><em>Therefore the final moles of the gas is 14.2 × </em></u>
<u><em> moles.</em></u>