Choice C, x-2y=4, Subsitute 0 for y and see what x is. Do the same for the y-intercept
Answer:
A. x=√60
Step-by-step explanation:
Divide 4 in half because you are solving half of an isosceles triangle
You formula is x²+2²=8²
Square root what you can: x²+4=64
Isolate the variable: x²=60
Square root both sides, x=√60
Answer:
For a trapezium of height H, parallel side 1 X, and parallel side 2 Y, the area is:
A = (1/2)*H*(X + Y)
with this we can complete the table.
a)
Here we know:
X = 7cm
Y = 11cm
H = 6cm
Then: A = (1/2)*6cm*(7cm + 11cm) = 54 cm^2
b)
Here we know:
X = 8 m
Y = 10 m
A = 126 m^2
Then:
126 m^2 = 0.5*H*(8m + 10m)
126 m^2 = H*9m
126 m^2/9m = H = 14m
Then the height of this trapezoid is 14m
c)
Here we know:
X = 5mm
H = 8mm
A = 72 mm^2
Then:
72 mm^2 = 0.5*8mm*(5mm + Y)
72 mm^2 = 4mm*(5mm + Y)
72mm^2/4mm = 5mm + Y
18 mm = 5mm + Y
18mm - 5mm = Y
13 mm = Y
Then the parallel side 2 is 13 mm long.
Answer:
sum of angles in atriangle=180°
Step-by-step explanation:
w-45°+w-37°+w+19°=180°(sum of angles in a triangle)
3w=180°+45°+37°-19°
3w=243°
w=81°
Answer:
Both Scott and Tara have responded correctly.
Step-by-step explanation:
we know that
The area of a trapezoid is equal to
A=(1/2)[b1+b2]h
we have
b1=16 cm
b2=24 cm
h=8 cm -----> <em>Note</em> The height is 8 cm instead of 18 cm
substitute
A=(1/2)[16+24](8)
A=160 cm²
<em>Verify Scott 's work</em>
<em>Note</em> Scott wrote A = (1/2)(24 + 16)(8) instead of A = 2(24 + 16)(8)
Remember that the Commutative Property establishes "The order of the addends does not alter its result"
so
(24+16)=(16+24)
A = (1/2)(24 + 16)(8)=160 cm²
<em>Verify Tara's work</em>
<em>Note</em> Tara wrote A = (1/2)(16+24)(8) instead of A = (16 + 24)(8)
A = (1/2)(16+24)(8)=160 cm²