3y + 2 > 5y + 8
2y > -6
y > -3
Chandlers salary increased by 5 percent, to find this answer you take his new salary and divide it by its old and the decimal is the percentage increase
System A:
6x + y = 2
-x - y = -3
System B:
2x - 3y = -10
-x-y = -3
Solve:
System A:
6x + y = 2
y = 2 - 6x
-x - (2-6x) = -3
-x - 2 + 6x = -3
5x = -3 + 2
5x = -1
x = -1/5
y = 2 - 6(-1/5)
y = 2 + 6/5
y = 2 + 1.2
y = 3.2 System A: x = -1/5 or -0.2 ; y = 3 1/5 or 3.2
System B:
2x - 3y = -10
2x = -10 + 3y
x = -5 + 1.5y
-x - y = -3
-(-5 + 1.5y) -y = -3
5 - 1.5y - y = -3
-2.5y = -3 - 5
-2.5y = -8
y = 3.2
x = -5 + 1.5(3.2)
x = -5 + 4.8
x = -0.2 System B: x = -0.2 ; y = 3.2
<span>B) They will have the same solution because the first equations of both the systems have the same graph.</span>
Answer
11.5 ft
Step-by-step explanation:
Perimeter of rectangle:2(l+w)
l :1/4 ft w:11/2 ft
2(1/4+11/2)=11.5
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)