Answer:
The statement is false.
Step-by-step explanation:
A parallelogram is a figure of four sides, such that opposite sides are parallel
A rectangle is a four-sided figure such that all internal angles are 90°
Here, the statement is:
"A rectangle is sometimes a parallelogram but a parallelogram is always a
rectangle."
Here if we found a parallelogram that is not a rectangle, then that is enough to prove that the statement is false.
The counterexample is a rhombus, which is a parallelogram that has two internal angles smaller than 90° and two internal angles larger than 90°, then this parallelogram is not a rectangle, then the statement is false.
The correct statement would be:
"A parallelogram is sometimes a rectangle, but a rectangle is always a parallelogram"
Answer:
Step-by-step explanation:
Given:
x = 2cost,
t = (1/2)arccosx
y = 2sint
dy/dx = dy/dt . dt/dx
dy/dt = 2cost
dt/dx = -1/√(1 - x²)
dy/dx = -2cost/√(1 - x²)
Differentiate again to obtain d²y/dx²
d²y/dx² = 2sint/√(1 - x²) - 2xcost/(1 - x²)^(-3/2)
At t = π/4, we have
(√2)/√(1 - x²) - (√2)x(1 - x²)^(3/2)
Answer:
x = 9
Step-by-step explanation:
6 × 9 = 54
54 + 15 = 69, which is less than 70.
54•150,I think that’s the way to do it,let me know if I’m wrong.
Nope, <span>5r + r3s is not a monomial.
Monomials cannot include addition or subtraction, and since this uses addition, it is not a monomial.
</span>
I hope this helps and have a great day! If you need anymore help you can link me to another question and I will try to solve it!