To get the number of standard deviation that 77 is from the mean, we get the z-score:
z-score is given by
z=(x-μ)/σ
where:
μ-mean
σ-standard deviation
thus the value of z from the information above is:
x=77
μ=58
σ=7
z=(77-58)/7=2.7143
Answer:
16.9 units
Step-by-step explanation:
Sometimes the easiest way to work these problems is to get a little help from technology. The GeoGebra program/app can tell you the length of a "polyline", but it takes an extra segment to complete the perimeter. It shows the perimeter to be ...
14.87 + 2 = 16.87 ≈ 16.9 . . . units
_____
The distance formula can be used to find the lengths of individual segments. It tells you ...
d = √((Δx)² +(Δy)²)
where Δx and Δy are the differences between x- and y-coordinates of the segment end points.
If the segments are labeled A, B, C, D, E in order, the distances are ...
AB = √(5²+1²) = √26 ≈ 5.099
BC = √(1²+3²) = √10 ≈ 3.162
CD = Δx = 3
DE = √(3²+2²) = √13 ≈ 3.606
EA = Δy = 2
Then the perimeter is ...
P = AB +BC +CD +DE +EA = 5.099 +3.162 +3 +3.606 +2 = 16.867
P ≈ 16.9
Given:
Endpoints of a segment are (0,0) and (27,27).
To find:
The points of trisection of the segment.
Solution:
Points of trisection means 2 points between the segment which divide the segment in 3 equal parts.
First point divide the segment in 1:2 and second point divide the segment in 2:1.
Section formula: If a point divides a line segment in m:n, then

Using section formula, the coordinates of first point are



Using section formula, the coordinates of first point are



Therefore, the points of trisection of the segment are (9,9) and (18,18).
Answer:
y=-2x+9
Step-by-step explanation:
12% of 120 is 14.4
Change the percentage into a decimal by dividing over 100:
12 / 100 = 0.12
Multiply:
0.12 × 120 = 14.4