Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
Answer is: t<span>he hot soup will lose heat and the ice water will gain heat.
</span><span>Heat spontaneously flows from a hotter to a colder body.
</span>The thermal radiation<span> is </span>electromagnetic radiation<span> generated by the </span>thermal motion<span> of </span>charged particles<span> in </span>matter (in this case from the hot soup to the cold water).
Answer: (D) Are there solvents mixed in (or is it water based)?
Th actual yield of the reaction is 24.86 g
We'll begin by calculating the theoretical yield of the reaction.
2Na + Cl₂ → 2NaCl
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl from the balanced = 2 × 58.5 = 117 g
From the balanced equation above,
46 g of Na reacted to produce 117 g of NaCl.
Therefore,
11.5 g of Na will react to produce = (11.5 × 117) / 46 = 29.25 g of NaCl.
Thus, the theoretical yield of NaCl is 29.25 g.
Finally, we shall determine the actual yield of NaCl.
- Theoretical yield = 29.25 g
Actual yield = Percent yield × Theoretical yield
Actual yield = 85% × 29.25
Actual yield = 0.85 × 29.25 g
Actual yield = 24.86 g
Learn more about stoichiometry: brainly.com/question/25899385
Answer:
Reducing sugars are absent
Explanation:
Benedict's solution is an substance used in testing sugars. It is mixture of sodium carbonate, sodium citrate and copper(II) sulfate pentahydrate. It can be used instead of Fehling's solution in testing for the presence of reducing sugars.
Reducing sugars contain the -CHO group. If there is no colour change after the addition of Benedict's solution, then we can conclude that reducing sugars are absent.