Answer:
im pretty sure you need 15 in all but dont get mad it thats wrong, so you would i think need 3 neutrons
Explanation:
Answer:
91.16% has decayed & 8.84% remains
Explanation:
A = A₀e⁻ᵏᵗ => ln(A/A₀) = ln(e⁻ᵏᵗ) => lnA - lnA₀ = -kt => lnA = lnA₀ - kt
Rate Constant (k) = 0.693/half-life = 0.693/10³yrs = 6.93 x 10ˉ⁴yrsˉ¹
Time (t) = 1000yrs
A = fraction of nuclide remaining after 1000yrs
A₀ = original amount of nuclide = 1.00 (= 100%)
lnA = lnA₀ - kt
lnA = ln(1) – (6.93 x 10ˉ⁴yrsˉ¹)(3500yrs) = -2.426
A = eˉ²∙⁴²⁶ = 0.0884 = fraction of nuclide remaining after 3500 years
Amount of nuclide decayed = 1 – 0.0884 = 0.9116 or 91.16% has decayed.
Answer:
See the answer below , please.
Explanation:
In a decomposition reaction, a certain compound is "broken" to give two or more different products.
An example for compound AB, giving as products A and B:
AB -> A + B
In the case of water:
2H20 -> 2H2 + 02, water decomposes giving Hydrogen and Oxygen
Answer:
★ Molecular geometry is described by VSEPR theory, which basically states that electron pairs around a central atom will repel each other, and get as far apart as possible, in three dimensions.
Explanation:
Hope you have a great day :)
Repeat trials multiple times