Answer:
the woman has to live 1 mile from work to minimize the expenses
Step-by-step explanation:
Given the data in the question;
the distance within 9 miles ⇒ 0 < x > 9
Total costs Q = cx + 4c/( x + 1)
costs should be minimum ⇒ dQ/dx = 0
⇒ d/dx [ cx + 4c/( x + 1) ] = 0
⇒ ( x + 1)² = 4
take square root of both side
√[ ( x + 1)² ] = √4
x + 1 = 2
x = 2 - 1
x = 1
Therefore, the woman has to live 1 mile from work to minimize the expenses
Answer:
its x^4
Step-by-step explanation:
its x^4
Well to get the area of 288 the dimensions would be a couple of things but 16 ft by 18 ft seems to work, so the dimensions increase by 4 ft on each side.
12+4=16
14+4=18
18*16=288
Answer:
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 10 - 1 = 9
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 9 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.2622
The margin of error is:
M = T*s = 2.2622*0.3 = 0.68
In which s is the standard deviation of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 98.44 - 0.68 = 97.76 ºF
The upper end of the interval is the sample mean added to M. So it is 98.44 + 0.68 = 99.12 ºF
The 95% confidence interval for the mean of all body temperatures is between 97.76 ºF and 99.12 ºF
Answer:
(it will take super long for me to answer this)
Step-by-step explanation:
Use desmos graphing calculator, put in your f(x)/y values and you will get all of the answers you need. Hope this is helpful :)