The general equation of a hyperbola with a horizontal transverse axis is defined as:
x²/a² - y²/b² = 1
Solving for b², we use the formula: a² + b² = c²
b² = 12² - 9² = 63
Equation of our hyperbola will be:
x²/81 - y²/63 = 1
Xy = 6
x = 2
2y = 6
y = 6÷2
y = 3
x + y = (2) + (3) = 5
Answer:
Therefore the y-intercept of the function is 4.
Step-by-step explanation:
Intercepts:
The line which intersect on x-axis and y-axis are called intercepts.
y-intercept: The line or function which intersect at y-axis. So when the line intersect at y-axis, X coordinate is zero.
So in the given Function Put x = 0 we will get the y-intercept

Put x =0


Therefore the y-intercept of the function is 4.
The area of the region which is inside the polar curve r = 5 sinθ but outside r = 4 will be 3.75 square units.
<h3>What is an area bounded by the curve?</h3>
When the two curves intersect then they bound the region is known as the area bounded by the curve.
The area of the region which is inside the polar curve r = 5 sinθ but outside r = 4 will be
Then the intersection point will be given as

Then by the integration, we have
![\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214}[ (5 \sin \theta)^2 - 4^2] d\theta \\\\\\\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214} [25\sin ^2 \theta - 16] d\theta \\\\\\\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214} [ \dfrac{25}{2}(1 - \cos 2\theta ) - 16] d\theta \\](https://tex.z-dn.net/?f=%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%5B%20%285%20%5Csin%20%5Ctheta%29%5E2%20-%204%5E2%5D%20d%5Ctheta%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%20%5B25%5Csin%20%5E2%20%5Ctheta%20-%2016%5D%20d%5Ctheta%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%20%5B%20%5Cdfrac%7B25%7D%7B2%7D%281%20-%20%5Ccos%202%5Ctheta%20%29%20-%2016%5D%20d%5Ctheta%20%5C%5C)
![\rightarrow \dfrac{1}{2} [\dfrac{25 \theta }{5} - \dfrac{25 \cos 2\theta }{2} - 16\theta]_{0.927}^{2.214} \\\\\\\rightarrow \dfrac{1}{2} [\dfrac{25(2.214 - 0.927) }{5} - \dfrac{25 (\cos 2\times 2.214 - \cos 2\times 0.927) }{2} - 16(2.214 - 0.927]\\](https://tex.z-dn.net/?f=%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5B%5Cdfrac%7B25%20%5Ctheta%20%7D%7B5%7D%20-%20%5Cdfrac%7B25%20%5Ccos%202%5Ctheta%20%7D%7B2%7D%20-%2016%5Ctheta%5D_%7B0.927%7D%5E%7B2.214%7D%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5B%5Cdfrac%7B25%282.214%20-%200.927%29%20%7D%7B5%7D%20-%20%5Cdfrac%7B25%20%28%5Ccos%202%5Ctimes%202.214%20-%20%5Ccos%202%5Ctimes%200.927%29%20%7D%7B2%7D%20-%2016%282.214%20-%200.927%5D%5C%5C)
On solving, we have

Thus, the area of the region is 3.75 square units.
More about the area bounded by the curve link is given below.
brainly.com/question/24563834
#SPJ4