Draw or Cut two similar squares with sides
units long.
Draw or cut four pairs of similar right triangles with side lengths as indicated in the diagram.
Now arrange the similar triangles at the corners of the squares such that the sides
of one similar triangle plus the side
of a second similar triangle coincides with the length of the square.
We do another arrangement of the similar triangles. This time arrange another 4 similar triangles in the opposite corners, such that each pair forms a square.
Now comparing the two different arrangements we got two different areas that are equal.
The area of the uncovered squares in the first arrangement is 
The area of the two uncovered squares in the second arrangement is 
Equating the two areas gives the Pythagoras Theorem

Note that
is the hypotenuse,
and
are two shorter sides of the similar right triangles.
Answer:
B) 12yd, 24yd, 32yd is the answer
Answer:
b then a
Step-by-step explanation:
If you add all the numbers on the right together you get -35 then you divide by 5 which gives you the average of -7*F
An 8th-degree polynomial needs 9 terms that involve
x⁸, x⁷, ..., x¹, and x⁰.
x=10 implies that (x-10) is a factor of the polynomial according to the Remainder theorem.
Let the polynomial be of the form
f(x) = a₁x⁸ + a₂x⁷ + a₃x⁶ +a₄x⁵ + a₅x⁴ + a₆x³ + a₇x² + a₈x + a₉
The first few lines of the synthetic division are
10 | a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈ a₉ ( the first row has 9 coefficients)
-----------------------------------------
a₁
Answer:
The first row has 9 coefficients.