
As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

<h3>
Answer:</h3>
5.55 mol C₂H₅OH
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂
[Given] 500. g C₆H₁₂O₆ (Glucose)
[Solve] moles C₂H₅OH (Ethanol)
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol C₆H₁₂O₆ → 2 mol C₂H₅OH
[PT] Molar mass of C - 12.01 g/mol
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of C₆H₁₂O₆ - 6(12.01) + 12(1.01) + 6(16.00) = 180.18 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA} Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
5.55001 mol C₂H₅OH ≈ 5.55 mol C₂H₅OH
V1M1 = V2M2
<span>V1 × 2.5 = 1 × 0.75,
so V1 = 0.75/2.5
= 0.3 </span>
Chemical bonds is the answer