Answer:
A molecule is a group of two or more atoms held together by chemical bonds. A compound is a substance which is formed by two or more different types of elements which are united chemically in a fixed proportion. All molecules are not compounds.
Good luck !
Answer:
see notes below
Explanation:
The mole is the mass of substance containing 1 Avogadro's Number of particles. That is, 1 mole substance = 1 formula weight. For elements, 1 mole weight is equal to the atomic weight expressed as grams. For molecules, 1 mole weight is equal to the molecular weight expressed as grams.
1 mole = 1 formula weight
<u>Moles to Grams and Grams to Moles</u>
Grams => Moles
Given grams, moles = mass given / formula weight
*Ask the question => How many formula weights are there in the given mass? => Results is always moles.
Moles => Grams
Given moles, grams = moles given X formula weight
*Summary
Grams to Moles => divide by formula weight
Moles to Grams => multiply by formula weight
Answer:
D
Explanation:
it is neon because neon has a higher atomic number so it would have more protons and neutrons and electrons in one atom thus having more particles in one mole
0.0788 will be the number of moles of silver in coin.
<h3><u>How to find the number of moles?</u></h3>
A mole is the mass of a material made up of the same number of fundamental components. Atoms in a 12 gram example are identical to 12C. Depending on the material, the fundamental units may be molecules, atoms, or formula units.
A mole fraction shows how many chemical elements are present. The value of 6.023 x 10²³ is equivalent to one mole of any material (Avagadro's number). It can be used to quantify the chemical reaction's byproducts. The symbol for the unit is mol.
The number of moles formula is denoted by the following expression:
Number of moles = Mass of substance/mass of one mole
To view more about number of moles, refer to:
brainly.com/question/14080043
#SPJ4
Answer:
See detailed mechanism in the image attached
Explanation:
The mechanism shown in detail below is the synthesis of serine in steps.
The first step is the attack of the ethoxide ion base on the diethyl acetamidomalonate substrate giving the enolate and formaldehyde.
The second step is the protonation of the oxyanion from (1) above to form an alcohol as shown.
Acid hydrolysis of the alcohol formed in (3) above yields a tetrahedral intermediate, a dicarboxyamino alcohol.
Decarboxylation of this dicarboxyamino alcohol yields serine, the final product as shown in the image attached.