Answer:
We are given the correlation between height and weight for adults is 0.40.
We need to find the proportion of the variability in weight that can be explained by the relationship with height.
We know that coefficient of determination or R-square measures the proportion or percent of variability in dependent variable that can be explained by the relationship with independent variable. There the coefficient of determination is given below:

Therefore, the 0.16 or 16% of the variability in weight can be explained by the relationship with height
Answer:
the radius=9m2
i solve the question and answer is 9
Answer:
Let Craigs age = x
Therefore Dianes age = 25 + x ( since she's 25 years older)
Dianes + Craigs age = (25 + x) + x = 105 (They said both of their ages sums up to 105)
25 + 2x = 105
2x = 80
x = 40
Craigs age is 40 years old.
Dianes age is 65 years old.
1/20 were striped if you want that as a decimal it would be 0.05 :)
well, first off let's check those two points, we know it's centerd at (-26 , 120) and we also know it passes through (0 , 0), so the distance between those two points is its radius
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{0}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-26}~,~\stackrel{y_2}{120})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{radius}{r}=\sqrt{(~~-26 - 0~~)^2 + (~~120 - 0~~)^2} \implies r=\sqrt{(-26)^2 + (120 )^2} \\\\\\ r=\sqrt{( -26 )^2 + ( 120 )^2} \implies r=\sqrt{ 676 + 14400 } \implies r=\sqrt{ 15076 } \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-26%7D~%2C~%5Cstackrel%7By_2%7D%7B120%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bradius%7D%7Br%7D%3D%5Csqrt%7B%28~~-26%20-%200~~%29%5E2%20%2B%20%28~~120%20-%200~~%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%28-26%29%5E2%20%2B%20%28120%20%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20r%3D%5Csqrt%7B%28%20-26%20%29%5E2%20%2B%20%28%20120%20%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%20676%20%2B%2014400%20%7D%20%5Cimplies%20r%3D%5Csqrt%7B%2015076%20%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \hspace{5em}\stackrel{center}{(\underset{-26}{h}~~,~~\underset{120}{k})}\qquad \stackrel{radius}{\underset{\sqrt{15076}}{r}} \\\\[-0.35em] ~\dotfill\\\\ ( ~~ x - (-26) ~~ )^2 ~~ + ~~ ( ~~ y-120 ~~ )^2~~ = ~~(\sqrt{15076})^2 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (x+26)^2+(y-120)^2 = 15076~\hfill](https://tex.z-dn.net/?f=%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Chspace%7B5em%7D%5Cstackrel%7Bcenter%7D%7B%28%5Cunderset%7B-26%7D%7Bh%7D~~%2C~~%5Cunderset%7B120%7D%7Bk%7D%29%7D%5Cqquad%20%5Cstackrel%7Bradius%7D%7B%5Cunderset%7B%5Csqrt%7B15076%7D%7D%7Br%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%20~~%20x%20-%20%28-26%29%20~~%20%29%5E2%20~~%20%2B%20~~%20%28%20~~%20y-120%20~~%20%29%5E2~~%20%3D%20~~%28%5Csqrt%7B15076%7D%29%5E2%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%28x%2B26%29%5E2%2B%28y-120%29%5E2%20%3D%2015076~%5Chfill)