By simplifying
. This will result in a simplified version of
.
The Simplifying Algorithm is a wonderful way to simplify complex mathematics problems. It can be used to solve equations, convert fractions to decimals, and perform many other math operations. In this problem, the Simplifying Algorithm will help you reduce ![\[x - \frac{{23}}{{{x^2}}} - x - 20 - \frac{2}{5} - x\]](https://tex.z-dn.net/?f=%5C%5Bx%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20x%20-%2020%20-%20%5Cfrac%7B2%7D%7B5%7D%20-%20x%5C%5D)
Since two opposites add up to 0, remove them from the expression.
![\[ - \frac{{23}}{{{x^2}}} - \frac{{102}}{5} - x\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B23%7D%7D%7B%7B%7Bx%5E2%7D%7D%7D%20-%20%5Cfrac%7B%7B102%7D%7D%7B5%7D%20-%20x%5C%5D)
Write all numerators above the least common denominator 5x2
![\[ - \frac{{115 + 102{x^2} + 5{x^3}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B115%20%2B%20102%7Bx%5E2%7D%20%2B%205%7Bx%5E3%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Use the commutative property to reorder the terms so that constants on the left
![\[\frac{{ - 5{x^3} - 115 - 102{x^2}}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20115%20-%20102%7Bx%5E2%7D%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Rearrange the terms
![\[\frac{{ - 5{x^3} - 102{x^2} - 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%5Cfrac%7B%7B%20-%205%7Bx%5E3%7D%20-%20102%7Bx%5E2%7D%20-%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
By reording the terms
![\[ - \frac{{5{x^3} + 102{x^2} + 115}}{{5{x^2}}}\]](https://tex.z-dn.net/?f=%5C%5B%20-%20%5Cfrac%7B%7B5%7Bx%5E3%7D%20%2B%20102%7Bx%5E2%7D%20%2B%20115%7D%7D%7B%7B5%7Bx%5E2%7D%7D%7D%5C%5D)
Hence, by simplifying this equation, divide both numerator and denominator. This will result in a simplified version of
.
To learn more about simplifyication visit:
brainly.com/question/1542396
#SPJ1
Answer:
1/64
Step-by-step explanation:
There is no attachment to your phone question. I look forward to answer your question.
Answer:
Concept: Basic Multiplication
- You have 3 1/4 which can be said in decimal form to be 3.25
- You multiply it by 3 to get 9.75 or 9 3/4
- Hence D
- Rate brainlist
The answer is 64. Hope it helps you