Volumes.
If you put equivalent volumes in a bag, where both weigh the same, the density might get equal.
Hope it helped,
Happy homework/ study/ exam!
Answer: magnesium atom
Explanation:
magnesium atom
The chlorophyll molecule consists of a central magnesium atom surrounded by a nitrogen-containing structure called a porphyrin ring; attached to the ring is a long carbon–hydrogen side chain, known as a phytol chain.
Pigment molecules capturing photons in the chloroplast are organized in distinct structures called photosystems.
Photosynthetic pigments, which include chlorophyll a, chlorophyll b, and carotenoids, are light-harvesting molecules found in chloroplast thylakoid membranes. As previously stated, pigments and proteins are organized into complexes known as photosystems.
Photosystems are functional units for photosynthesis that are defined by specific pigment organization and association patterns. Their work is the absorption and transfer of light energy, which implies electron transfer. Photosystems are physically found in thylakoid membranes.
Chloroplasts are chlorophyll-containing organelles found in plant cells; they are essential for life on Earth because photosynthesis occurs in chloroplasts. Proplastids give rise to chloroplasts, as do chromoplasts, leucoplasts, and other plastids. Light energy absorption and conversion into biological energy
To learn more about photosystems and chloroplasts, here
brainly.com/question/13776808
#SPJ4
<u>The heart is a cone-shaped muscular organ located within the mediastinum of the thorax.</u>
The mediastinum is the space lined with membranous tissue between the lungs. The mediastinum contains not only the heart but also the great vessels (pulmonary artery, aorta, pulmonary veins, and the superior and inferior vena cava), as well as parts of the esophagus and the trachea.
<span><u>Its apex rests on the </u><u>diaphragm</u><u> and its superior margin lies at the level of the </u><u>2nd</u><u> rib.</u>
</span>
The apex of the heart is the conical area created by the confluence of the ventricles, but mainly by the left ventricle. It rests on the diaphragm. The superior margin of the heart, also known as the base, lies at the level of the second rib.
<span><u>Approximately two-thirds of the heart mass is seen to the left of the </u><u>midsternal border</u><span><u>.</u>
</span>
This is because to the left of the midsternal border lies the left ventricle which comprises most of the heart mass as the left ventricle is the one responsible for pumping blood throughout the systemic circulation and significant pressure should be overcame; resulting to the physiologic hypertrophy of the left ventricle.
</span><span><u>The heart is enclosed in a serosal sac called the </u><u>pericardium</u><u>. The loosely fitting double outer layer consists of the outermost fibrous pericardium, lined by the parietal layer of the serous pericardium.</u></span>
The pericardium is one of three layers of the heart (other ones being the myocardium and the endocardium); and is the outer layer of the heart. The pericardium is composed of two tissues, the fibrous pericardium and the serous pericardium. The pericardium functions to lubricate the movement of the heart by the action of the pericardial fluid.
<span><u>The heart has </u><u>four</u><u> chambers. R</u></span><span><u>elative to the roles of these chambers, the </u><u>atria </u><u>are the receiving chambers, </u></span><span><u>whereas the </u><u>ventricles </u><u>are the discharging chambers.</u>
</span>
The four chambers of the heart are namely the right atrium, right ventricle, left atrium, and the left ventricle. Venous blood goes to the right atrium via the vena cavas then to the right ventricle via the tricuspid valve; then to the pulmonary circulation via the pulmonary artery where it will be oxygenated. From the pulmonary circulation, the left atrium will receive the oxygenated blood via the pulmonary veins then to the left ventricle via the mitral valve where it will be pumped to the systemic circulation via the aorta.