Answer:
g(0.9) ≈ -2.6
g(1.1) ≈ 0.6
For 1.1 the estimation is a bit too high and for 0.9 it is too low.
Step-by-step explanation:
For values of x near 1 we can estimate g(x) with t(x) = g'(1) (x-1) + g(1). Note that g'(1) = 1²+15 = 16, and for values near one g'(x) is increasing because x² is increasing for positive values. This means that the tangent line t(x) will be above the graph of g, and the estimates we will make are a bit too big for values at the right of 1, like 1.1, and they will be too low for values at the left like 0.9.
For 0.9, we estimate
g(0.9) ≈ 16* (-0.1) -1 = -2.6
g(1.1) ≈ 16* 0.1 -1 = 0.6
Answer:
x + 5y = 0
Step-by-step explanation:
y = mx + b
y = -1/5 x + b
1 = -1/5 (-5) + b
1 = 1 + b
b = 0
y = -1/5 x
5y = -x
x + 5y = 0
You start by looking at what number can divide evenly into both 16 and 48. Both numbers are divisible by 16. 16 goes into 16 once and 16 goes into 48 three times. So you divide each term by 16 and your expression should look like this: 16 (p+3)