The hypothesis test shows that we reject the null hypothesis and there is sufficient evidence to support the claim that the return rate is less than 20%
<h3>What is the claim that the return rate is less than 20% by using a statistical hypothesis method?</h3>
The claim that the return rate is less than 20% is p < 0.2. From the given information, we can compute our null hypothesis and alternative hypothesis as:


Given that:
Sample size (n) = 6965
Sample proportion 
The test statistics for this data can be computed as:



z = -2.73
From the hypothesis testing, since the p < alternative hypothesis, then our test is a left-tailed test(one-tailed.
Hence, the p-value for the test statistics can be computed as:
P-value = P(Z ≤ z)
P-value = P(Z ≤ - 2.73)
By using the Excel function =NORMDIST (-2.73)
P-value = 0.00317
P-value ≅ 0.003
Therefore, we can conclude that since P-value is less than the significance level at ∝ = 0.01, we reject the null hypothesis and there is sufficient evidence to support the claim that the return rate is less than 20%
Learn more about hypothesis testing here:
brainly.com/question/15980493
#SPJ1
Answer:
10
Step-by-step explanation:
8 to the second power is 64
6 to the second power is 36
36+64=100
the square root of 100 is 10
so 10 is the length of the hypotenuse
Hope this helps!
I believe 4 people would get 7.5 part of of it
Answer:
The functions are inverses; f(g(x)) = x ⇒ answer D
⇒ answer D
Step-by-step explanation:
* <em>Lets explain how to find the inverse of a function</em>
- Let f(x) = y
- Exchange x and y
- Solve to find the new y
- The new y = 
* <em>Lets use these steps to solve the problems</em>
∵ 
∵ f(x) = y
∴ 
- Exchange x and y
∴ 
- Square the two sides
∴ x² = y - 3
- Add 3 to both sides
∴ x² + 3 = y
- Change y by 
∴ 
∵ g(x) = x² + 3
∴ 
∴ <u><em>The functions are inverses to each other</em></u>
* <em>Now lets find f(g(x))</em>
- To find f(g(x)) substitute x in f(x) by g(x)
∵ 
∵ g(x) = x² + 3
∴ 
∴ <u><em>f(g(x)) = x</em></u>
∴ The functions are inverses; f(g(x)) = x
* <em>Lets find the inverse of h(x)</em>
∵ h(x) = 3x² - 1 where x ≥ 0
- Let h(x) = y
∴ y = 3x² - 1
- Exchange x and y
∴ x = 3y² - 1
- Add 1 to both sides
∴ x + 1 = 3y²
- Divide both sides by 3
∴ 
- Take √ for both sides
∴ ± 
∵ x ≥ 0
∴ We will chose the positive value of the square root
∴ 
- replace y by 
∴ 