Answers:
The formula is [f(-1)-f(-4)]/[3]
The value of f(-1) is 3
The value of f(-4) is -3
The average rate of change is 2
==============================================
Explanation:
For the first blank, we use the formula
[ f(b) - f(a) ]/[ b - a ]
where 'a' and 'b' are the endpoints for the x interval
In this case, a = -4 and b = -1. When you plug those values into the formula above, you get...
[ f(b) - f(a) ]/[ b - a]
[ f(-1) - f(-4)]/[ -1 - (-4) ]
[ f(-1) - f(-4)]/[ -1+4 ]
[ f(-1) - f(-4)]/[ 3 ]
which is why the answer is choice C for the first blank
-------------------------------------------
To compute the value of f(-1), we draw a vertical line through -1 on the x axis. This vertical line crosses the diagonal function graph at the point (-1,3). The y value of this point is what we want. Plugging in x = -1 leads to y = 3. This is why f(-1) = 3
If you want, you can draw a horizontal line through (-1,3) and you'll see it touching 3 on the y axis.
-------------------------------------------
Follow similar steps as above to compute f(-4). Draw a vertical line through x = -4 on the x axis. Mark the point where the vertical line crosses the diagonal line. This point is (-4,-3). Optionally draw a horizontal line over til you hit the y axis and you'll find that y = -3 corresponds to x = -4
This is why f(-4) = -3
-------------------------------------------
We'll use the last three sections to compute the average rate of change. Everything combines together building up to this moment.
From the first part, we had the formula
[ f(b) - f(a) ]/[ b - a ]
[ f(-1) - f(-4)]/[ 3 ]
We can replace the "f(-1)" with 3 since we found that f(-1) = 3
Similarly, f(-4) = -3 so we can replace the "f(-4)" with -3
Doing those replacements and simplifying leads to...
[ f(-1) - f(-4)]/[ 3 ]
[ 3 - (-3)]/[ 3 ]
[ 3 + 3]/[ 3 ]
6/3
2
So the average rate of change is 2
Note: because the entire graph is a straight line, the average rate of change for any interval a < x < b is going to be equal to the slope m. In this case, the slope of the line is m = 2/1 = 2. We move up 2 units each time we move to the right 1 unit along the diagonal line.
Hello there!
For this you simply need to give both fractions a common denominator!
The easiest way to do this specific problem would be to make the denominator 12. Why 12? Because 4 x 3 = 12.
So:
1/4 --> ?/12 --> 1 (3) / 12 --> 3/12
2/3 --> ?/12 --> 2 (4) / 12 --> 8/12
Total amount of time means the sum (adding them together).
When adding fractions, you MUST have a common denominator! (Which is what we just did).
So 3/12 + 8/12 = (8+3) / 12 = 11/12 hours
Notice how the denominator stayed the same? When adding/subtracting fractions, the denominator stays the same! :)
Hope this helped!
-------------------------------
DISCLAIMER: I am not a professional tutor or have any professional background in your subject. Please do not copy my work down, as that will only make things harder for you in the long run. Take the time to really understand this, and it'll make future problems easier. I am human, and may make mistakes, despite my best efforts. Again, I possess no professional background in your subject, so anything you do with my help will be your responsibility. Thank you for reading this, and have a wonderful day/night!
Answer:
46
Step-by-step explanation:
16+30
Find the image of the point (−2,−7) under ,so it’s (12,-1)
Pi(r)(r)(2) + pi(diameter)(height)
3.14(4)(4)(2)+ 3.14(8)(1.5)
138.16